Functional regression with randomized signatures: An application to age-specific mortality rates Article Swipe
We propose a novel extension of the Hyndman-Ullah (HU) model to forecast mortality rates by integrating randomized signatures, referred to as the HU model with randomized signatures (HUrs). Unlike truncated signatures, which grow exponentially with order, randomized signatures, based on the Johnson-Lindenstrauss lemma, are able to approximate higher-order interactions in a computationally feasible way. Using mortality data from four countries, we evaluate the performance of the novel HUrs model compared to two alternative HU model versions. Our empirical results show that the proposed HUrs model performs well, particularly for Bulgarian and Japanese data.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.03513
- https://arxiv.org/pdf/2503.03513
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416085083
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416085083Canonical identifier for this work in OpenAlex
- Title
-
Functional regression with randomized signatures: An application to age-specific mortality ratesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-05Full publication date if available
- Authors
-
Zhong Jing Yap, Dharini Pathmanathan, Sophie Dabo‐NiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.03513Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.03513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.03513Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416085083 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4416085083 |
| fwci | |
| type | preprint |
| title | Functional regression with randomized signatures: An application to age-specific mortality rates |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.03513 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.03513 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.03513 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5115772072 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhong Jing Yap |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yap, Zhong Jing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016896235 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3279-4031 |
| authorships[1].author.display_name | Dharini Pathmanathan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pathmanathan, Dharini |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049255136 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4000-6752 |
| authorships[2].author.display_name | Sophie Dabo‐Niang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dabo-Niang, Sophie |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.03513 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Functional regression with randomized signatures: An application to age-specific mortality rates |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:29:05.562944 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.03513 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.03513 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.03513 |
| primary_location.id | pmh:oai:arXiv.org:2503.03513 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.03513 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.03513 |
| publication_date | 2025-03-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 50 |
| abstract_inverted_index.HU | 22, 73 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.by | 14 |
| abstract_inverted_index.in | 49 |
| abstract_inverted_index.of | 5, 64 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.to | 10, 19, 45, 70 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.Our | 76 |
| abstract_inverted_index.and | 90 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.for | 88 |
| abstract_inverted_index.the | 6, 21, 40, 62, 65, 81 |
| abstract_inverted_index.two | 71 |
| abstract_inverted_index.(HU) | 8 |
| abstract_inverted_index.HUrs | 67, 83 |
| abstract_inverted_index.able | 44 |
| abstract_inverted_index.data | 56 |
| abstract_inverted_index.four | 58 |
| abstract_inverted_index.from | 57 |
| abstract_inverted_index.grow | 32 |
| abstract_inverted_index.show | 79 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.way. | 53 |
| abstract_inverted_index.with | 24, 34 |
| abstract_inverted_index.Using | 54 |
| abstract_inverted_index.based | 38 |
| abstract_inverted_index.data. | 92 |
| abstract_inverted_index.model | 9, 23, 68, 74, 84 |
| abstract_inverted_index.novel | 3, 66 |
| abstract_inverted_index.rates | 13 |
| abstract_inverted_index.well, | 86 |
| abstract_inverted_index.which | 31 |
| abstract_inverted_index.Unlike | 28 |
| abstract_inverted_index.lemma, | 42 |
| abstract_inverted_index.order, | 35 |
| abstract_inverted_index.(HUrs). | 27 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 78 |
| abstract_inverted_index.Japanese | 91 |
| abstract_inverted_index.compared | 69 |
| abstract_inverted_index.evaluate | 61 |
| abstract_inverted_index.feasible | 52 |
| abstract_inverted_index.forecast | 11 |
| abstract_inverted_index.performs | 85 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.referred | 18 |
| abstract_inverted_index.Bulgarian | 89 |
| abstract_inverted_index.empirical | 77 |
| abstract_inverted_index.extension | 4 |
| abstract_inverted_index.mortality | 12, 55 |
| abstract_inverted_index.truncated | 29 |
| abstract_inverted_index.versions. | 75 |
| abstract_inverted_index.countries, | 59 |
| abstract_inverted_index.randomized | 16, 25, 36 |
| abstract_inverted_index.signatures | 26 |
| abstract_inverted_index.alternative | 72 |
| abstract_inverted_index.approximate | 46 |
| abstract_inverted_index.integrating | 15 |
| abstract_inverted_index.performance | 63 |
| abstract_inverted_index.signatures, | 17, 30, 37 |
| abstract_inverted_index.higher-order | 47 |
| abstract_inverted_index.interactions | 48 |
| abstract_inverted_index.particularly | 87 |
| abstract_inverted_index.Hyndman-Ullah | 7 |
| abstract_inverted_index.exponentially | 33 |
| abstract_inverted_index.computationally | 51 |
| abstract_inverted_index.Johnson-Lindenstrauss | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |