Functional Solid–Liquid Interfaces for Electrochemical Blood Glucose Sensing: New Insights and Future Prospects Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/chemosensors13110385
· OA: W4415815097
Blood glucose monitoring is essential for the treatment of diabetes, a chronic disease that affects millions of people worldwide. Non-electrochemical blood glucose sensors often lack sensitivity and selectivity, especially in complex biological fluids, and are not suitable for wearable point-of-care devices. Electrochemical blood glucose sensors, on the other hand, are easy to handle, inexpensive, and offer high sensitivity and selectivity even in the presence of interfering molecules. They can also be seamlessly integrated into wearable devices. This review explores the key blood glucose technologies, emphasizing the operating principle and classification of electrochemical glucose sensors. It also highlights the role of functional solid–liquid interfaces in optimizing sensor performance. Recent developments in solid–liquid interfacial materials, including metal-based, metal oxide-based, carbon-based, nanoparticle-based, conductive polymer, and graphene-based interfaces, are systematically analyzed for their sensing potential. Furthermore, this review highlights existing patents, the evolving market landscape, and data from clinical studies that bridge the gap between laboratory research and commercial application. Finally, we present future perspectives and highlight the need for next-generation wearable and enzyme-free glucose sensors for continuous and non-invasive glucose monitoring.