FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/bib/bbae623
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, the upstream (epi)genetic regulatory information has not been sufficiently leveraged to predict the function of lncRNAs in various biological processes. Therefore, we present FunlncModel, a machine learning–based interpretable computational framework, which aims to screen out functional lncRNAs by integrating a large number of (epi)genetic features and functional genomic features from their upstream/downstream multi-omic regulatory networks. We adopted the random forest method to mine nearly 60 features in three categories from >2000 datasets across 11 data types, including transcription factors (TFs), histone modifications, typical enhancers, super-enhancers, methylation sites, and mRNAs. FunlncModel outperformed alternative methods for classification performance in human embryonic stem cell (hESC) (0.95 Area Under Curve (AUROC) and 0.97 Area Under the Precision-Recall Curve (AUPRC)). It could not only infer the most known lncRNAs that influence the states of stem cells, but also discover novel high-confidence functional lncRNAs. We extensively validated FunlncModel’s efficacy by up to 27 cancer-related functional prediction tasks, which involved multiple cancer cell growth processes and cancer hallmarks. Meanwhile, we have also found that (epi)genetic regulatory features, such as TFs and histone modifications, serve as strong predictors for revealing the function of lncRNAs. Overall, FunlncModel is a strong and stable prediction model for identifying functional lncRNAs in specific cellular contexts. FunlncModel is available as a web server at https://bio.liclab.net/FunlncModel/.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bib/bbae623
- OA Status
- gold
- Cited By
- 1
- References
- 82
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404789735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404789735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bib/bbae623Digital Object Identifier
- Title
-
FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-22Full publication date if available
- Authors
-
Yanyu Li, Fengcui Qian, Guorui Zhang, Xuecang Li, Li‐Wei Zhou, Zhengmin Yu, Wei Liu, Qiuyu Wang, Chunquan LiList of authors in order
- Landing page
-
https://doi.org/10.1093/bib/bbae623Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/bib/bbae623Direct OA link when available
- Concepts
-
Computational biology, Biology, Upstream (networking), Enhancer, Function (biology), Upstream and downstream (DNA), Computer science, Epigenetics, Machine learning, Transcription factor, Genetics, Gene, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404789735 |
|---|---|
| doi | https://doi.org/10.1093/bib/bbae623 |
| ids.doi | https://doi.org/10.1093/bib/bbae623 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39602828 |
| ids.openalex | https://openalex.org/W4404789735 |
| fwci | 0.56791475 |
| mesh[0].qualifier_ui | Q000235 |
| mesh[0].descriptor_ui | D062085 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | genetics |
| mesh[0].descriptor_name | RNA, Long Noncoding |
| mesh[1].qualifier_ui | Q000378 |
| mesh[1].descriptor_ui | D062085 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | metabolism |
| mesh[1].descriptor_name | RNA, Long Noncoding |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D053263 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Gene Regulatory Networks |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D019295 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Computational Biology |
| mesh[6].qualifier_ui | Q000378 |
| mesh[6].descriptor_ui | D014157 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | metabolism |
| mesh[6].descriptor_name | Transcription Factors |
| mesh[7].qualifier_ui | Q000235 |
| mesh[7].descriptor_ui | D014157 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | genetics |
| mesh[7].descriptor_name | Transcription Factors |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012984 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Software |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000095028 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Multiomics |
| mesh[11].qualifier_ui | Q000235 |
| mesh[11].descriptor_ui | D062085 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | genetics |
| mesh[11].descriptor_name | RNA, Long Noncoding |
| mesh[12].qualifier_ui | Q000378 |
| mesh[12].descriptor_ui | D062085 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | metabolism |
| mesh[12].descriptor_name | RNA, Long Noncoding |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D053263 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Gene Regulatory Networks |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D019295 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Computational Biology |
| mesh[17].qualifier_ui | Q000378 |
| mesh[17].descriptor_ui | D014157 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | metabolism |
| mesh[17].descriptor_name | Transcription Factors |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D014157 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | Transcription Factors |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000465 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Algorithms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D012984 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Software |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000095028 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Multiomics |
| mesh[22].qualifier_ui | Q000235 |
| mesh[22].descriptor_ui | D062085 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | genetics |
| mesh[22].descriptor_name | RNA, Long Noncoding |
| mesh[23].qualifier_ui | Q000378 |
| mesh[23].descriptor_ui | D062085 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | metabolism |
| mesh[23].descriptor_name | RNA, Long Noncoding |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000069550 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Machine Learning |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D053263 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Gene Regulatory Networks |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D019295 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Computational Biology |
| mesh[28].qualifier_ui | Q000378 |
| mesh[28].descriptor_ui | D014157 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | metabolism |
| mesh[28].descriptor_name | Transcription Factors |
| mesh[29].qualifier_ui | Q000235 |
| mesh[29].descriptor_ui | D014157 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | genetics |
| mesh[29].descriptor_name | Transcription Factors |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000465 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Algorithms |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D012984 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Software |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000095028 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Multiomics |
| type | article |
| title | FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs |
| biblio.issue | 1 |
| biblio.volume | 26 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10515 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1306 |
| topics[0].subfield.display_name | Cancer Research |
| topics[0].display_name | Cancer-related molecular mechanisms research |
| topics[1].id | https://openalex.org/T11482 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | RNA modifications and cancer |
| topics[2].id | https://openalex.org/T10604 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.984000027179718 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA Research and Splicing |
| is_xpac | False |
| apc_list.value | 4011 |
| apc_list.currency | USD |
| apc_list.value_usd | 4011 |
| apc_paid.value | 4011 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4011 |
| concepts[0].id | https://openalex.org/C70721500 |
| concepts[0].level | 1 |
| concepts[0].score | 0.668057918548584 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[0].display_name | Computational biology |
| concepts[1].id | https://openalex.org/C86803240 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5820173621177673 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[1].display_name | Biology |
| concepts[2].id | https://openalex.org/C191172861 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5410387516021729 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7899321 |
| concepts[2].display_name | Upstream (networking) |
| concepts[3].id | https://openalex.org/C111936080 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5075830221176147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q913367 |
| concepts[3].display_name | Enhancer |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4790440797805786 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C158980903 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4553963243961334 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7899329 |
| concepts[5].display_name | Upstream and downstream (DNA) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4551515579223633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C41091548 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41379499435424805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q26939 |
| concepts[7].display_name | Epigenetics |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3631244897842407 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C86339819 |
| concepts[9].level | 3 |
| concepts[9].score | 0.27586087584495544 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[9].display_name | Transcription factor |
| concepts[10].id | https://openalex.org/C54355233 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23876437544822693 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[10].display_name | Genetics |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.22370943427085876 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computational-biology |
| keywords[0].score | 0.668057918548584 |
| keywords[0].display_name | Computational biology |
| keywords[1].id | https://openalex.org/keywords/biology |
| keywords[1].score | 0.5820173621177673 |
| keywords[1].display_name | Biology |
| keywords[2].id | https://openalex.org/keywords/upstream |
| keywords[2].score | 0.5410387516021729 |
| keywords[2].display_name | Upstream (networking) |
| keywords[3].id | https://openalex.org/keywords/enhancer |
| keywords[3].score | 0.5075830221176147 |
| keywords[3].display_name | Enhancer |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.4790440797805786 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/upstream-and-downstream |
| keywords[5].score | 0.4553963243961334 |
| keywords[5].display_name | Upstream and downstream (DNA) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4551515579223633 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/epigenetics |
| keywords[7].score | 0.41379499435424805 |
| keywords[7].display_name | Epigenetics |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3631244897842407 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/transcription-factor |
| keywords[9].score | 0.27586087584495544 |
| keywords[9].display_name | Transcription factor |
| keywords[10].id | https://openalex.org/keywords/genetics |
| keywords[10].score | 0.23876437544822693 |
| keywords[10].display_name | Genetics |
| keywords[11].id | https://openalex.org/keywords/gene |
| keywords[11].score | 0.22370943427085876 |
| keywords[11].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1093/bib/bbae623 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S91767247 |
| locations[0].source.issn | 1467-5463, 1477-4054 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1467-5463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Briefings in Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Briefings in Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bib/bbae623 |
| locations[1].id | pmid:39602828 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Briefings in bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39602828 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11601888 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Brief Bioinform |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11601888 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101470623 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1416-9216 |
| authorships[0].author.display_name | Yanyu Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[0].affiliations[0].raw_affiliation_string | The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I91935597 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I91935597 |
| authorships[0].affiliations[2].raw_affiliation_string | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I91935597 |
| authorships[0].affiliations[3].raw_affiliation_string | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[0].institutions[0].id | https://openalex.org/I91935597 |
| authorships[0].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of South China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan-Yu Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China, Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China, School of Computer, University of South China, Hengyang, Hunan, 421001, China, The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[1].author.id | https://openalex.org/A5022537385 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3817-4690 |
| authorships[1].author.display_name | Fengcui Qian |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I91935597 |
| authorships[1].affiliations[1].raw_affiliation_string | The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I91935597 |
| authorships[1].affiliations[2].raw_affiliation_string | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I91935597 |
| authorships[1].affiliations[3].raw_affiliation_string | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[1].institutions[0].id | https://openalex.org/I91935597 |
| authorships[1].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of South China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Feng-Cui Qian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China, Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China, School of Computer, University of South China, Hengyang, Hunan, 421001, China, The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[2].author.id | https://openalex.org/A5100614429 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7124-1309 |
| authorships[2].author.display_name | Guorui Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[2].institutions[0].id | https://openalex.org/I91935597 |
| authorships[2].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of South China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo-Rui Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[3].author.id | https://openalex.org/A5050647868 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8755-9530 |
| authorships[3].author.display_name | Xuecang Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I156144747 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China |
| authorships[3].institutions[0].id | https://openalex.org/I156144747 |
| authorships[3].institutions[0].ror | https://ror.org/05jscf583 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I156144747 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Harbin Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xue-Cang Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China |
| authorships[4].author.id | https://openalex.org/A5073809871 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2851-2839 |
| authorships[4].author.display_name | Li‐Wei Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210167311 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210167311 |
| authorships[4].institutions[1].ror | https://ror.org/05skxkv18 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210167311 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Institute of Zoology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li-Wei Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China |
| authorships[5].author.id | https://openalex.org/A5080189085 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-0777-4043 |
| authorships[5].author.display_name | Zhengmin Yu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[5].institutions[0].id | https://openalex.org/I91935597 |
| authorships[5].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of South China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zheng-Min Yu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[6].author.id | https://openalex.org/A5100431827 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5496-3641 |
| authorships[6].author.display_name | Wei Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210161462 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, 150000, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210161462 |
| authorships[6].institutions[0].ror | https://ror.org/05x0m9n95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210161462 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Heilongjiang Institute of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wei Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, 150000, China |
| authorships[7].author.id | https://openalex.org/A5100650267 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8571-5715 |
| authorships[7].author.display_name | Qiuyu Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I91935597 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I91935597 |
| authorships[7].affiliations[2].raw_affiliation_string | The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[7].affiliations[3].institution_ids | https://openalex.org/I91935597 |
| authorships[7].affiliations[3].raw_affiliation_string | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China |
| authorships[7].institutions[0].id | https://openalex.org/I91935597 |
| authorships[7].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | University of South China |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Qiu-Yu Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China, Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China, School of Computer, University of South China, Hengyang, Hunan, 421001, China, The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].author.id | https://openalex.org/A5100728506 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4700-5496 |
| authorships[8].author.display_name | Chunquan Li |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I91935597 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Computer, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I91935597 |
| authorships[8].affiliations[1].raw_affiliation_string | Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I91935597 |
| authorships[8].affiliations[2].raw_affiliation_string | The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].affiliations[3].institution_ids | https://openalex.org/I91935597 |
| authorships[8].affiliations[3].raw_affiliation_string | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].affiliations[4].institution_ids | https://openalex.org/I91935597 |
| authorships[8].affiliations[4].raw_affiliation_string | Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan, 421001, China |
| authorships[8].institutions[0].id | https://openalex.org/I91935597 |
| authorships[8].institutions[0].ror | https://ror.org/03mqfn238 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I91935597 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | University of South China |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Chun-Quan Li |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China, Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan, 421001, China, School of Computer, University of South China, Hengyang, Hunan, 421001, China, The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/bib/bbae623 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10515 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1306 |
| primary_topic.subfield.display_name | Cancer Research |
| primary_topic.display_name | Cancer-related molecular mechanisms research |
| related_works | https://openalex.org/W3124485524, https://openalex.org/W4322775356, https://openalex.org/W2542074884, https://openalex.org/W2348356937, https://openalex.org/W4385833122, https://openalex.org/W3187420948, https://openalex.org/W3113528484, https://openalex.org/W2241146542, https://openalex.org/W2373560751, https://openalex.org/W3125376000 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bib/bbae623 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S91767247 |
| best_oa_location.source.issn | 1467-5463, 1477-4054 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1467-5463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Briefings in Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Briefings in Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bib/bbae623 |
| primary_location.id | doi:10.1093/bib/bbae623 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S91767247 |
| primary_location.source.issn | 1467-5463, 1477-4054 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1467-5463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Briefings in Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Briefings in Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bib/bbae623 |
| publication_date | 2024-11-22 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2784570320, https://openalex.org/W2100441605, https://openalex.org/W2107454957, https://openalex.org/W2029919331, https://openalex.org/W2146573461, https://openalex.org/W2145931730, https://openalex.org/W2150098952, https://openalex.org/W2147900600, https://openalex.org/W2586183753, https://openalex.org/W3030355620, https://openalex.org/W1974720903, https://openalex.org/W2110957978, https://openalex.org/W2116236561, https://openalex.org/W2126504590, https://openalex.org/W2001730700, https://openalex.org/W2116881442, https://openalex.org/W2118008449, https://openalex.org/W2996154122, https://openalex.org/W1992111383, https://openalex.org/W2558404077, https://openalex.org/W2889051002, https://openalex.org/W3127523348, https://openalex.org/W2884681204, https://openalex.org/W2152970345, https://openalex.org/W2801501532, https://openalex.org/W2531500048, https://openalex.org/W2772618228, https://openalex.org/W2972582951, https://openalex.org/W2604820680, https://openalex.org/W2899288360, https://openalex.org/W2117977572, https://openalex.org/W2900841953, https://openalex.org/W2979844864, https://openalex.org/W2113974339, https://openalex.org/W2910305771, https://openalex.org/W2951856336, https://openalex.org/W2094678200, https://openalex.org/W2561535772, https://openalex.org/W2054677853, https://openalex.org/W2034023446, https://openalex.org/W2007439698, https://openalex.org/W2899028887, https://openalex.org/W2950954328, https://openalex.org/W2899830787, https://openalex.org/W2895679848, https://openalex.org/W2102364475, https://openalex.org/W2907584383, https://openalex.org/W2741504317, https://openalex.org/W2128983843, https://openalex.org/W2799820278, https://openalex.org/W2548096658, https://openalex.org/W1987334390, https://openalex.org/W3197480694, https://openalex.org/W3045704485, https://openalex.org/W2259938310, https://openalex.org/W2341539131, https://openalex.org/W2049598074, https://openalex.org/W2017050785, https://openalex.org/W2118843707, https://openalex.org/W2145191876, https://openalex.org/W3208459100, https://openalex.org/W2035618305, https://openalex.org/W2122986552, https://openalex.org/W2979971613, https://openalex.org/W2094401230, https://openalex.org/W2768297197, https://openalex.org/W2571961634, https://openalex.org/W2982004779, https://openalex.org/W2130410032, https://openalex.org/W4308437947, https://openalex.org/W4388776988, https://openalex.org/W2558447935, https://openalex.org/W2043398720, https://openalex.org/W3107677589, https://openalex.org/W4389304675, https://openalex.org/W3187055914, https://openalex.org/W4316037913, https://openalex.org/W2946657092, https://openalex.org/W3202197780, https://openalex.org/W3198592168, https://openalex.org/W3044758578, https://openalex.org/W2788146114 |
| referenced_works_count | 82 |
| abstract_inverted_index.a | 58, 73, 223, 241 |
| abstract_inverted_index.11 | 107 |
| abstract_inverted_index.27 | 180 |
| abstract_inverted_index.60 | 98 |
| abstract_inverted_index.It | 149 |
| abstract_inverted_index.We | 89, 172 |
| abstract_inverted_index.as | 205, 211, 240 |
| abstract_inverted_index.at | 244 |
| abstract_inverted_index.by | 30, 71, 177 |
| abstract_inverted_index.in | 12, 50, 100, 130, 233 |
| abstract_inverted_index.is | 222, 238 |
| abstract_inverted_index.of | 48, 76, 162, 218 |
| abstract_inverted_index.to | 23, 44, 66, 95, 179 |
| abstract_inverted_index.up | 178 |
| abstract_inverted_index.we | 55, 196 |
| abstract_inverted_index.TFs | 206 |
| abstract_inverted_index.and | 14, 79, 121, 141, 192, 207, 225 |
| abstract_inverted_index.but | 165 |
| abstract_inverted_index.for | 127, 214, 229 |
| abstract_inverted_index.has | 39 |
| abstract_inverted_index.not | 40, 151 |
| abstract_inverted_index.out | 68 |
| abstract_inverted_index.the | 34, 46, 91, 145, 154, 160, 216 |
| abstract_inverted_index.web | 242 |
| abstract_inverted_index.0.97 | 142 |
| abstract_inverted_index.Area | 137, 143 |
| abstract_inverted_index.RNAs | 7 |
| abstract_inverted_index.aims | 65 |
| abstract_inverted_index.also | 166, 198 |
| abstract_inverted_index.been | 21, 41 |
| abstract_inverted_index.cell | 134, 189 |
| abstract_inverted_index.data | 108 |
| abstract_inverted_index.from | 83, 103 |
| abstract_inverted_index.have | 20, 197 |
| abstract_inverted_index.long | 5 |
| abstract_inverted_index.many | 18 |
| abstract_inverted_index.mine | 96 |
| abstract_inverted_index.most | 155 |
| abstract_inverted_index.only | 152 |
| abstract_inverted_index.play | 9 |
| abstract_inverted_index.stem | 133, 163 |
| abstract_inverted_index.such | 204 |
| abstract_inverted_index.that | 4, 158, 200 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.(0.95 | 136 |
| abstract_inverted_index.Curve | 139, 147 |
| abstract_inverted_index.Under | 138, 144 |
| abstract_inverted_index.could | 150 |
| abstract_inverted_index.found | 199 |
| abstract_inverted_index.human | 131 |
| abstract_inverted_index.infer | 153 |
| abstract_inverted_index.known | 156 |
| abstract_inverted_index.large | 74 |
| abstract_inverted_index.model | 228 |
| abstract_inverted_index.novel | 168 |
| abstract_inverted_index.roles | 11 |
| abstract_inverted_index.serve | 210 |
| abstract_inverted_index.their | 25, 84 |
| abstract_inverted_index.three | 101 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.which | 64, 185 |
| abstract_inverted_index.(TFs), | 113 |
| abstract_inverted_index.(hESC) | 135 |
| abstract_inverted_index.across | 106 |
| abstract_inverted_index.cancer | 188, 193 |
| abstract_inverted_index.cells, | 164 |
| abstract_inverted_index.forest | 93 |
| abstract_inverted_index.growth | 190 |
| abstract_inverted_index.mRNAs. | 122 |
| abstract_inverted_index.method | 94 |
| abstract_inverted_index.nearly | 97 |
| abstract_inverted_index.number | 75 |
| abstract_inverted_index.random | 92 |
| abstract_inverted_index.reveal | 24 |
| abstract_inverted_index.screen | 67 |
| abstract_inverted_index.server | 243 |
| abstract_inverted_index.sites, | 120 |
| abstract_inverted_index.stable | 226 |
| abstract_inverted_index.states | 161 |
| abstract_inverted_index.strong | 212, 224 |
| abstract_inverted_index.tasks, | 184 |
| abstract_inverted_index.types, | 109 |
| abstract_inverted_index.(AUROC) | 140 |
| abstract_inverted_index.adopted | 90 |
| abstract_inverted_index.complex | 28 |
| abstract_inverted_index.factors | 112 |
| abstract_inverted_index.genomic | 81 |
| abstract_inverted_index.histone | 114, 208 |
| abstract_inverted_index.lncRNAs | 49, 70, 157, 232 |
| abstract_inverted_index.machine | 59 |
| abstract_inverted_index.methods | 126 |
| abstract_inverted_index.predict | 45 |
| abstract_inverted_index.present | 56 |
| abstract_inverted_index.typical | 116 |
| abstract_inverted_index.various | 51 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 17 |
| abstract_inverted_index.Overall, | 220 |
| abstract_inverted_index.biology. | 16 |
| abstract_inverted_index.cellular | 15, 235 |
| abstract_inverted_index.datasets | 105 |
| abstract_inverted_index.discover | 167 |
| abstract_inverted_index.diseases | 29 |
| abstract_inverted_index.efficacy | 176 |
| abstract_inverted_index.evidence | 2 |
| abstract_inverted_index.features | 78, 82, 99 |
| abstract_inverted_index.function | 47, 217 |
| abstract_inverted_index.involved | 186 |
| abstract_inverted_index.lncRNAs. | 171, 219 |
| abstract_inverted_index.multiple | 187 |
| abstract_inverted_index.specific | 234 |
| abstract_inverted_index.targets, | 33 |
| abstract_inverted_index.upstream | 35 |
| abstract_inverted_index.(AUPRC)). | 148 |
| abstract_inverted_index.(lncRNAs) | 8 |
| abstract_inverted_index.available | 239 |
| abstract_inverted_index.contexts. | 236 |
| abstract_inverted_index.developed | 22 |
| abstract_inverted_index.embryonic | 132 |
| abstract_inverted_index.features, | 203 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.including | 110 |
| abstract_inverted_index.indicates | 3 |
| abstract_inverted_index.influence | 159 |
| abstract_inverted_index.leveraged | 43 |
| abstract_inverted_index.molecular | 13 |
| abstract_inverted_index.networks. | 88 |
| abstract_inverted_index.noncoding | 6 |
| abstract_inverted_index.processes | 191 |
| abstract_inverted_index.revealing | 215 |
| abstract_inverted_index.validated | 174 |
| abstract_inverted_index.Meanwhile, | 195 |
| abstract_inverted_index.Therefore, | 54 |
| abstract_inverted_index.algorithms | 19 |
| abstract_inverted_index.biological | 52 |
| abstract_inverted_index.categories | 102 |
| abstract_inverted_index.downstream | 32 |
| abstract_inverted_index.enhancers, | 117 |
| abstract_inverted_index.framework, | 63 |
| abstract_inverted_index.functional | 69, 80, 170, 182, 231 |
| abstract_inverted_index.hallmarks. | 194 |
| abstract_inverted_index.multi-omic | 86 |
| abstract_inverted_index.prediction | 183, 227 |
| abstract_inverted_index.predictors | 213 |
| abstract_inverted_index.processes. | 53 |
| abstract_inverted_index.regulatory | 37, 87, 202 |
| abstract_inverted_index.FunlncModel | 123, 221, 237 |
| abstract_inverted_index.alternative | 125 |
| abstract_inverted_index.extensively | 173 |
| abstract_inverted_index.identifying | 230 |
| abstract_inverted_index.information | 38 |
| abstract_inverted_index.integrating | 72 |
| abstract_inverted_index.methylation | 119 |
| abstract_inverted_index.performance | 129 |
| abstract_inverted_index.>2000 | 104 |
| abstract_inverted_index.(epi)genetic | 36, 77, 201 |
| abstract_inverted_index.Accumulating | 1 |
| abstract_inverted_index.FunlncModel, | 57 |
| abstract_inverted_index.associations | 26 |
| abstract_inverted_index.outperformed | 124 |
| abstract_inverted_index.sufficiently | 42 |
| abstract_inverted_index.computational | 62 |
| abstract_inverted_index.interpretable | 61 |
| abstract_inverted_index.transcription | 111 |
| abstract_inverted_index.cancer-related | 181 |
| abstract_inverted_index.classification | 128 |
| abstract_inverted_index.modifications, | 115, 209 |
| abstract_inverted_index.FunlncModel’s | 175 |
| abstract_inverted_index.high-confidence | 169 |
| abstract_inverted_index.Precision-Recall | 146 |
| abstract_inverted_index.learning–based | 60 |
| abstract_inverted_index.super-enhancers, | 118 |
| abstract_inverted_index.upstream/downstream | 85 |
| abstract_inverted_index.https://bio.liclab.net/FunlncModel/. | 245 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100728506 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I91935597 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.67707956 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |