FusionNet: A parallel deep learning model for speech recognition with feature clustering Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17862065
FusionNet is a parallel, hybrid deep-learning framework engineered for next-generation speech recognition and on-device speech-to-text processing. The system is implemented as an Android application (Java/XML) and integrated with Firebase Realtime Database to support secure, user-centric data management. Audio input undergoes a multi-stage preprocessing pipeline where MFCC, spectral, and temporal features are extracted and clustered using K-Means to group acoustically similar speech segments. These clustered representations are simultaneously processed through a dual-branch architecture: a Convolutional Neural Network (CNN) that learns spectral signatures and a Bidirectional Long Short-Term Memory (BiLSTM) network that models temporal dependencies. The fused embeddings are then classified using a Random Forest classifier, improving prediction stability in noisy or accent-variable conditions. To enhance semantic clarity, an NLP engine supported by a generative AI model refines the raw transcriptions, corrects contextual errors, and extracts user intent. Real-time inference is achieved via TensorFlow Lite (TFLite), enabling low-latency, energy-efficient execution directly on mobile hardware without cloud dependency. FusionNet demonstrates robustness against ambient noise, speaker variability, and multilingual inputs, making it a practical and scalable solution for voice-driven applications. This hybrid architecture effectively combines clustering, parallel deep learning, classical ML classification, and generative AI reasoning to deliver an intelligent, high-accuracy speech recognition system tailored for real-world deployment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.17862065
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111273844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111273844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17862065Digital Object Identifier
- Title
-
FusionNet: A parallel deep learning model for speech recognition with feature clusteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-31Full publication date if available
- Authors
-
Ramteke, Revati Harichandra, Rathod, Seema BList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17862065Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17862065Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Speech recognition, Deep learning, Scalability, Robustness (evolution), Preprocessor, Inference, Convolutional neural network, Pipeline (software), Sphinx, Cluster analysis, Generative model, Pattern recognition (psychology), Mobile device, Hidden Markov model, Artificial neural network, Mixture model, Autoencoder, Feature extraction, Feature (linguistics), Deep belief network, Feature learning, Cloud computing, Generative grammar, Speech processing, Spectrogram, Android (operating system), Hybrid system, Spectral clusteringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111273844 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17862065 |
| ids.doi | https://doi.org/10.5281/zenodo.17862065 |
| ids.openalex | https://openalex.org/W7111273844 |
| fwci | 0.0 |
| type | article |
| title | FusionNet: A parallel deep learning model for speech recognition with feature clustering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9059950113296509 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.024548498913645744 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.02062986046075821 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.831329345703125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.647377073764801 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C28490314 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5534782409667969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[2].display_name | Speech recognition |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5442224740982056 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5140442848205566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.49251189827919006 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C34736171 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4882361888885498 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[6].display_name | Preprocessor |
| concepts[7].id | https://openalex.org/C2776214188 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4880261719226837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[7].display_name | Inference |
| concepts[8].id | https://openalex.org/C81363708 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4859013259410858 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[8].display_name | Convolutional neural network |
| concepts[9].id | https://openalex.org/C43521106 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4384251534938812 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[9].display_name | Pipeline (software) |
| concepts[10].id | https://openalex.org/C2777299493 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4368446171283722 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q151480 |
| concepts[10].display_name | Sphinx |
| concepts[11].id | https://openalex.org/C73555534 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3985038995742798 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[11].display_name | Cluster analysis |
| concepts[12].id | https://openalex.org/C167966045 |
| concepts[12].level | 3 |
| concepts[12].score | 0.39519885182380676 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[12].display_name | Generative model |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.39211305975914 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C186967261 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3890916407108307 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5082128 |
| concepts[14].display_name | Mobile device |
| concepts[15].id | https://openalex.org/C23224414 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3784201741218567 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[15].display_name | Hidden Markov model |
| concepts[16].id | https://openalex.org/C50644808 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3730415403842926 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[16].display_name | Artificial neural network |
| concepts[17].id | https://openalex.org/C61224824 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3438217341899872 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2260434 |
| concepts[17].display_name | Mixture model |
| concepts[18].id | https://openalex.org/C101738243 |
| concepts[18].level | 3 |
| concepts[18].score | 0.3388999402523041 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[18].display_name | Autoencoder |
| concepts[19].id | https://openalex.org/C52622490 |
| concepts[19].level | 2 |
| concepts[19].score | 0.32807657122612 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[19].display_name | Feature extraction |
| concepts[20].id | https://openalex.org/C2776401178 |
| concepts[20].level | 2 |
| concepts[20].score | 0.3161041736602783 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[20].display_name | Feature (linguistics) |
| concepts[21].id | https://openalex.org/C97385483 |
| concepts[21].level | 3 |
| concepts[21].score | 0.3130267262458801 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[21].display_name | Deep belief network |
| concepts[22].id | https://openalex.org/C59404180 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2979685962200165 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[22].display_name | Feature learning |
| concepts[23].id | https://openalex.org/C79974875 |
| concepts[23].level | 2 |
| concepts[23].score | 0.28838083148002625 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[23].display_name | Cloud computing |
| concepts[24].id | https://openalex.org/C39890363 |
| concepts[24].level | 2 |
| concepts[24].score | 0.28597262501716614 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[24].display_name | Generative grammar |
| concepts[25].id | https://openalex.org/C61328038 |
| concepts[25].level | 2 |
| concepts[25].score | 0.27837109565734863 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q3358061 |
| concepts[25].display_name | Speech processing |
| concepts[26].id | https://openalex.org/C45273575 |
| concepts[26].level | 2 |
| concepts[26].score | 0.274532675743103 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[26].display_name | Spectrogram |
| concepts[27].id | https://openalex.org/C557433098 |
| concepts[27].level | 2 |
| concepts[27].score | 0.26748961210250854 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[27].display_name | Android (operating system) |
| concepts[28].id | https://openalex.org/C50897621 |
| concepts[28].level | 2 |
| concepts[28].score | 0.25639674067497253 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q2665508 |
| concepts[28].display_name | Hybrid system |
| concepts[29].id | https://openalex.org/C105611402 |
| concepts[29].level | 3 |
| concepts[29].score | 0.2556309103965759 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q2976589 |
| concepts[29].display_name | Spectral clustering |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.5442224740982056 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/scalability |
| keywords[1].score | 0.5140442848205566 |
| keywords[1].display_name | Scalability |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.49251189827919006 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.4882361888885498 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.4880261719226837 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.4859013259410858 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/pipeline |
| keywords[6].score | 0.4384251534938812 |
| keywords[6].display_name | Pipeline (software) |
| keywords[7].id | https://openalex.org/keywords/sphinx |
| keywords[7].score | 0.4368446171283722 |
| keywords[7].display_name | Sphinx |
| keywords[8].id | https://openalex.org/keywords/cluster-analysis |
| keywords[8].score | 0.3985038995742798 |
| keywords[8].display_name | Cluster analysis |
| keywords[9].id | https://openalex.org/keywords/generative-model |
| keywords[9].score | 0.39519885182380676 |
| keywords[9].display_name | Generative model |
| language | en |
| locations[0].id | doi:10.5281/zenodo.17862065 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17862065 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ramteke, Revati Harichandra |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150513749 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Scholar, MTech Computer Science and Engineering, SIPNA College of Engineering and Technology, Amravati. |
| authorships[0].institutions[0].id | https://openalex.org/I150513749 |
| authorships[0].institutions[0].ror | https://ror.org/05s8p6g93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150513749 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Sant Gadge Baba Amravati University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramteke, Revati Harichandra |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Research Scholar, MTech Computer Science and Engineering, SIPNA College of Engineering and Technology, Amravati. |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Rathod, Seema B |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150513749 |
| authorships[1].affiliations[0].raw_affiliation_string | Professor, Computer Science and Engineering, SIPNA College of Engineering and Technology, Amravati. |
| authorships[1].institutions[0].id | https://openalex.org/I150513749 |
| authorships[1].institutions[0].ror | https://ror.org/05s8p6g93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150513749 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Sant Gadge Baba Amravati University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Rathod, Seema B |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Professor, Computer Science and Engineering, SIPNA College of Engineering and Technology, Amravati. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17862065 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | FusionNet: A parallel deep learning model for speech recognition with feature clustering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9059950113296509 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17862065 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17862065 |
| primary_location.id | doi:10.5281/zenodo.17862065 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17862065 |
| publication_date | 2025-12-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 40, 69, 72, 82, 100, 121, 168 |
| abstract_inverted_index.AI | 123, 190 |
| abstract_inverted_index.ML | 186 |
| abstract_inverted_index.To | 112 |
| abstract_inverted_index.an | 21, 116, 194 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.by | 120 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 1, 18, 138 |
| abstract_inverted_index.it | 167 |
| abstract_inverted_index.on | 149 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 31, 56, 192 |
| abstract_inverted_index.NLP | 117 |
| abstract_inverted_index.The | 16, 93 |
| abstract_inverted_index.and | 12, 25, 47, 52, 81, 132, 163, 170, 188 |
| abstract_inverted_index.are | 50, 65, 96 |
| abstract_inverted_index.for | 8, 173, 201 |
| abstract_inverted_index.raw | 127 |
| abstract_inverted_index.the | 126 |
| abstract_inverted_index.via | 140 |
| abstract_inverted_index.Lite | 142 |
| abstract_inverted_index.Long | 84 |
| abstract_inverted_index.This | 176 |
| abstract_inverted_index.data | 35 |
| abstract_inverted_index.deep | 183 |
| abstract_inverted_index.that | 77, 89 |
| abstract_inverted_index.then | 97 |
| abstract_inverted_index.user | 134 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.(CNN) | 76 |
| abstract_inverted_index.Audio | 37 |
| abstract_inverted_index.MFCC, | 45 |
| abstract_inverted_index.These | 62 |
| abstract_inverted_index.cloud | 153 |
| abstract_inverted_index.fused | 94 |
| abstract_inverted_index.group | 57 |
| abstract_inverted_index.input | 38 |
| abstract_inverted_index.model | 124 |
| abstract_inverted_index.noisy | 108 |
| abstract_inverted_index.using | 54, 99 |
| abstract_inverted_index.where | 44 |
| abstract_inverted_index.Forest | 102 |
| abstract_inverted_index.Memory | 86 |
| abstract_inverted_index.Neural | 74 |
| abstract_inverted_index.Random | 101 |
| abstract_inverted_index.engine | 118 |
| abstract_inverted_index.hybrid | 4, 177 |
| abstract_inverted_index.learns | 78 |
| abstract_inverted_index.making | 166 |
| abstract_inverted_index.mobile | 150 |
| abstract_inverted_index.models | 90 |
| abstract_inverted_index.noise, | 160 |
| abstract_inverted_index.speech | 10, 60, 197 |
| abstract_inverted_index.system | 17, 199 |
| abstract_inverted_index.Android | 22 |
| abstract_inverted_index.K-Means | 55 |
| abstract_inverted_index.Network | 75 |
| abstract_inverted_index.against | 158 |
| abstract_inverted_index.ambient | 159 |
| abstract_inverted_index.deliver | 193 |
| abstract_inverted_index.enhance | 113 |
| abstract_inverted_index.errors, | 131 |
| abstract_inverted_index.inputs, | 165 |
| abstract_inverted_index.intent. | 135 |
| abstract_inverted_index.network | 88 |
| abstract_inverted_index.refines | 125 |
| abstract_inverted_index.secure, | 33 |
| abstract_inverted_index.similar | 59 |
| abstract_inverted_index.speaker | 161 |
| abstract_inverted_index.support | 32 |
| abstract_inverted_index.through | 68 |
| abstract_inverted_index.without | 152 |
| abstract_inverted_index.(BiLSTM) | 87 |
| abstract_inverted_index.Database | 30 |
| abstract_inverted_index.Firebase | 28 |
| abstract_inverted_index.Realtime | 29 |
| abstract_inverted_index.achieved | 139 |
| abstract_inverted_index.clarity, | 115 |
| abstract_inverted_index.combines | 180 |
| abstract_inverted_index.corrects | 129 |
| abstract_inverted_index.directly | 148 |
| abstract_inverted_index.enabling | 144 |
| abstract_inverted_index.extracts | 133 |
| abstract_inverted_index.features | 49 |
| abstract_inverted_index.hardware | 151 |
| abstract_inverted_index.parallel | 182 |
| abstract_inverted_index.pipeline | 43 |
| abstract_inverted_index.scalable | 171 |
| abstract_inverted_index.semantic | 114 |
| abstract_inverted_index.solution | 172 |
| abstract_inverted_index.spectral | 79 |
| abstract_inverted_index.tailored | 200 |
| abstract_inverted_index.temporal | 48, 91 |
| abstract_inverted_index.(TFLite), | 143 |
| abstract_inverted_index.FusionNet | 0, 155 |
| abstract_inverted_index.Real-time | 136 |
| abstract_inverted_index.classical | 185 |
| abstract_inverted_index.clustered | 53, 63 |
| abstract_inverted_index.execution | 147 |
| abstract_inverted_index.extracted | 51 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.improving | 104 |
| abstract_inverted_index.inference | 137 |
| abstract_inverted_index.learning, | 184 |
| abstract_inverted_index.on-device | 13 |
| abstract_inverted_index.parallel, | 3 |
| abstract_inverted_index.practical | 169 |
| abstract_inverted_index.processed | 67 |
| abstract_inverted_index.reasoning | 191 |
| abstract_inverted_index.segments. | 61 |
| abstract_inverted_index.spectral, | 46 |
| abstract_inverted_index.stability | 106 |
| abstract_inverted_index.supported | 119 |
| abstract_inverted_index.undergoes | 39 |
| abstract_inverted_index.(Java/XML) | 24 |
| abstract_inverted_index.Short-Term | 85 |
| abstract_inverted_index.TensorFlow | 141 |
| abstract_inverted_index.classified | 98 |
| abstract_inverted_index.contextual | 130 |
| abstract_inverted_index.embeddings | 95 |
| abstract_inverted_index.engineered | 7 |
| abstract_inverted_index.generative | 122, 189 |
| abstract_inverted_index.integrated | 26 |
| abstract_inverted_index.prediction | 105 |
| abstract_inverted_index.real-world | 202 |
| abstract_inverted_index.robustness | 157 |
| abstract_inverted_index.signatures | 80 |
| abstract_inverted_index.application | 23 |
| abstract_inverted_index.classifier, | 103 |
| abstract_inverted_index.clustering, | 181 |
| abstract_inverted_index.conditions. | 111 |
| abstract_inverted_index.dependency. | 154 |
| abstract_inverted_index.deployment. | 203 |
| abstract_inverted_index.dual-branch | 70 |
| abstract_inverted_index.effectively | 179 |
| abstract_inverted_index.implemented | 19 |
| abstract_inverted_index.management. | 36 |
| abstract_inverted_index.multi-stage | 41 |
| abstract_inverted_index.processing. | 15 |
| abstract_inverted_index.recognition | 11, 198 |
| abstract_inverted_index.acoustically | 58 |
| abstract_inverted_index.architecture | 178 |
| abstract_inverted_index.demonstrates | 156 |
| abstract_inverted_index.intelligent, | 195 |
| abstract_inverted_index.low-latency, | 145 |
| abstract_inverted_index.multilingual | 164 |
| abstract_inverted_index.user-centric | 34 |
| abstract_inverted_index.variability, | 162 |
| abstract_inverted_index.voice-driven | 174 |
| abstract_inverted_index.Bidirectional | 83 |
| abstract_inverted_index.Convolutional | 73 |
| abstract_inverted_index.applications. | 175 |
| abstract_inverted_index.architecture: | 71 |
| abstract_inverted_index.deep-learning | 5 |
| abstract_inverted_index.dependencies. | 92 |
| abstract_inverted_index.high-accuracy | 196 |
| abstract_inverted_index.preprocessing | 42 |
| abstract_inverted_index.simultaneously | 66 |
| abstract_inverted_index.speech-to-text | 14 |
| abstract_inverted_index.accent-variable | 110 |
| abstract_inverted_index.classification, | 187 |
| abstract_inverted_index.next-generation | 9 |
| abstract_inverted_index.representations | 64 |
| abstract_inverted_index.transcriptions, | 128 |
| abstract_inverted_index.energy-efficient | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.91372408 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |