Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.dcan.2022.09.025
The inability of traditional privacy-preserving models to protect multiple datasets based on sensitive attributes has prompted researchers to propose models such as SLOMS, SLAMSA, (p, k)-Angelization, and (p, l)-Angelization, but these were found to be insufficient in terms of robust privacy and performance. (p, l)-Angelization was successful against different privacy disclosures, but it was not efficient. To the best of our knowledge, no robust privacy model based on fuzzy logic has been proposed to protect the privacy of sensitive attributes with multiple records. In this paper, we suggest an improved version of (p, l)-Angelization based on a hybrid AI approach and privacy-preserving approach like Generalization. Fuzz-classification (p, l)-Angel uses artificial intelligence based fuzzy logic for classification, a high-dimensional segmentation technique for segmenting quasi-identifiers and multiple sensitive attributes. We demonstrate the feasibility of the proposed solution by modelling and analyzing privacy violations using High-Level Petri Nets. The results of the experiment demonstrate that the proposed approach produces better results in terms of efficiency and utility.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.dcan.2022.09.025
- OA Status
- diamond
- Cited By
- 3
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304690262
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304690262Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.dcan.2022.09.025Digital Object Identifier
- Title
-
Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breachesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-12Full publication date if available
- Authors
-
Tehsin Kanwal, Hasina Attaullah, Adeel Anjum, Abid Khan, Gwanggil JeonList of authors in order
- Landing page
-
https://doi.org/10.1016/j.dcan.2022.09.025Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.dcan.2022.09.025Direct OA link when available
- Concepts
-
Computer science, Fuzzy logic, Identifier, Generalization, Artificial intelligence, Data mining, Segmentation, Machine learning, Mathematics, Programming language, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304690262 |
|---|---|
| doi | https://doi.org/10.1016/j.dcan.2022.09.025 |
| ids.doi | https://doi.org/10.1016/j.dcan.2022.09.025 |
| ids.openalex | https://openalex.org/W4304690262 |
| fwci | 0.58739646 |
| type | article |
| title | Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches |
| biblio.issue | 5 |
| biblio.volume | 9 |
| biblio.last_page | 1140 |
| biblio.first_page | 1131 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11045 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Privacy, Security, and Data Protection |
| topics[2].id | https://openalex.org/T11598 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Internet Traffic Analysis and Secure E-voting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8471241593360901 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7080802917480469 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C154504017 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6567105054855347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q853614 |
| concepts[2].display_name | Identifier |
| concepts[3].id | https://openalex.org/C177148314 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6205268502235413 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[3].display_name | Generalization |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5622802376747131 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.548046886920929 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42067235708236694 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4096105098724365 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0713227391242981 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8471241593360901 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.7080802917480469 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/identifier |
| keywords[2].score | 0.6567105054855347 |
| keywords[2].display_name | Identifier |
| keywords[3].id | https://openalex.org/keywords/generalization |
| keywords[3].score | 0.6205268502235413 |
| keywords[3].display_name | Generalization |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5622802376747131 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.548046886920929 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.42067235708236694 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4096105098724365 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.0713227391242981 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.dcan.2022.09.025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495769766 |
| locations[0].source.issn | 2352-8648, 2468-5925 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-8648 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Communications and Networks |
| locations[0].source.host_organization | https://openalex.org/P4310320345 |
| locations[0].source.host_organization_name | KeAi |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | KeAi, Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Digital Communications and Networks |
| locations[0].landing_page_url | https://doi.org/10.1016/j.dcan.2022.09.025 |
| locations[1].id | pmh:oai:doaj.org/article:20cce5af23254c9ab6748f1ccf14af2a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Digital Communications and Networks, Vol 9, Iss 5, Pp 1131-1140 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/20cce5af23254c9ab6748f1ccf14af2a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5074580346 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tehsin Kanwal |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16076960 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, COMSATS University Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I16076960 |
| authorships[0].institutions[0].ror | https://ror.org/00nqqvk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16076960 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | COMSATS University Islamabad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tehsin Kanwal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, COMSATS University Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5047957724 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hasina Attaullah |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16076960 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, COMSATS University Islamabad, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I16076960 |
| authorships[1].institutions[0].ror | https://ror.org/00nqqvk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16076960 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | COMSATS University Islamabad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hasina Attaullah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, COMSATS University Islamabad, Pakistan |
| authorships[2].author.id | https://openalex.org/A5062778007 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5083-0019 |
| authorships[2].author.display_name | Adeel Anjum |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12469534 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Technology, Quaid-e-Azam University Islamabad, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I12469534 |
| authorships[2].institutions[0].ror | https://ror.org/04s9hft57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12469534 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | Quaid-i-Azam University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adeel Anjum |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Technology, Quaid-e-Azam University Islamabad, Pakistan |
| authorships[3].author.id | https://openalex.org/A5002659533 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2712-1956 |
| authorships[3].author.display_name | Abid Khan |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I22128151 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Science and Engineering, School of Computing and Maths, University of Derby, DE22 1GB, UK |
| authorships[3].institutions[0].id | https://openalex.org/I22128151 |
| authorships[3].institutions[0].ror | https://ror.org/02yhrrk59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I22128151 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Derby |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abid Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Science and Engineering, School of Computing and Maths, University of Derby, DE22 1GB, UK |
| authorships[4].author.id | https://openalex.org/A5049449184 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0651-4278 |
| authorships[4].author.display_name | Gwanggil Jeon |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I146429904 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Embedded Systems Engineering, Incheon National University, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I146429904 |
| authorships[4].institutions[0].ror | https://ror.org/02xf7p935 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I146429904 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Incheon National University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gwanggil Jeon |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Embedded Systems Engineering, Incheon National University, South Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.dcan.2022.09.025 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4378651134, https://openalex.org/W4252684102, https://openalex.org/W2352307597, https://openalex.org/W1979633005, https://openalex.org/W2163724607, https://openalex.org/W3135403405, https://openalex.org/W2608983118, https://openalex.org/W1980092392, https://openalex.org/W37347591, https://openalex.org/W2118976126 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.dcan.2022.09.025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495769766 |
| best_oa_location.source.issn | 2352-8648, 2468-5925 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-8648 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Communications and Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310320345 |
| best_oa_location.source.host_organization_name | KeAi |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Digital Communications and Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.dcan.2022.09.025 |
| primary_location.id | doi:10.1016/j.dcan.2022.09.025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495769766 |
| primary_location.source.issn | 2352-8648, 2468-5925 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-8648 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Communications and Networks |
| primary_location.source.host_organization | https://openalex.org/P4310320345 |
| primary_location.source.host_organization_name | KeAi |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Digital Communications and Networks |
| primary_location.landing_page_url | https://doi.org/10.1016/j.dcan.2022.09.025 |
| publication_date | 2022-10-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3012275626, https://openalex.org/W2142406320, https://openalex.org/W2963693643, https://openalex.org/W2159024459, https://openalex.org/W1974251814, https://openalex.org/W6677285977, https://openalex.org/W2134167315, https://openalex.org/W6679800425, https://openalex.org/W6675831477, https://openalex.org/W6669107938, https://openalex.org/W2019376841, https://openalex.org/W6683072952, https://openalex.org/W1996300823, https://openalex.org/W6650004627, https://openalex.org/W6639019481, https://openalex.org/W2921455460, https://openalex.org/W3129268705, https://openalex.org/W6677514193, https://openalex.org/W6666559598, https://openalex.org/W2064483023, https://openalex.org/W2343343776, https://openalex.org/W101198203, https://openalex.org/W6653890351, https://openalex.org/W2473598913, https://openalex.org/W2197655425, https://openalex.org/W1606592130, https://openalex.org/W6661077456, https://openalex.org/W2799292411, https://openalex.org/W2619172985, https://openalex.org/W6761700458, https://openalex.org/W3012825013, https://openalex.org/W6780831869, https://openalex.org/W2534045157, https://openalex.org/W2902377290, https://openalex.org/W6786617093, https://openalex.org/W2971692619, https://openalex.org/W6782212629, https://openalex.org/W6675710970, https://openalex.org/W6677248446, https://openalex.org/W6680341455, https://openalex.org/W6671121173, https://openalex.org/W2184071978, https://openalex.org/W2887273542, https://openalex.org/W6753440617, https://openalex.org/W3184248340, https://openalex.org/W2107885921, https://openalex.org/W6631703199, https://openalex.org/W2117300520, https://openalex.org/W3149355587, https://openalex.org/W2139284526, https://openalex.org/W4236328165, https://openalex.org/W2074738750, https://openalex.org/W2935711763, https://openalex.org/W4253874399, https://openalex.org/W4235157178, https://openalex.org/W1527356121, https://openalex.org/W2064093247, https://openalex.org/W2490689622, https://openalex.org/W3109780743, https://openalex.org/W2080711471, https://openalex.org/W2014521328, https://openalex.org/W2155520880, https://openalex.org/W2558487592, https://openalex.org/W2105393591, https://openalex.org/W3045116893, https://openalex.org/W2043113437, https://openalex.org/W3080460547, https://openalex.org/W2136114025 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 96, 116 |
| abstract_inverted_index.AI | 98 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 127 |
| abstract_inverted_index.an | 88 |
| abstract_inverted_index.as | 21 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 36, 158 |
| abstract_inverted_index.it | 52 |
| abstract_inverted_index.no | 62 |
| abstract_inverted_index.of | 2, 38, 59, 77, 91, 131, 147, 160 |
| abstract_inverted_index.on | 11, 67, 95 |
| abstract_inverted_index.to | 6, 17, 33, 73 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.(p, | 24, 27, 43, 92, 106 |
| abstract_inverted_index.The | 0, 145 |
| abstract_inverted_index.and | 26, 41, 100, 123, 137, 162 |
| abstract_inverted_index.but | 29, 51 |
| abstract_inverted_index.for | 114, 120 |
| abstract_inverted_index.has | 14, 70 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.our | 60 |
| abstract_inverted_index.the | 57, 75, 129, 132, 148, 152 |
| abstract_inverted_index.was | 45, 53 |
| abstract_inverted_index.been | 71 |
| abstract_inverted_index.best | 58 |
| abstract_inverted_index.like | 103 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.that | 151 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.uses | 108 |
| abstract_inverted_index.were | 31 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.Nets. | 144 |
| abstract_inverted_index.Petri | 143 |
| abstract_inverted_index.based | 10, 66, 94, 111 |
| abstract_inverted_index.found | 32 |
| abstract_inverted_index.fuzzy | 68, 112 |
| abstract_inverted_index.logic | 69, 113 |
| abstract_inverted_index.model | 65 |
| abstract_inverted_index.terms | 37, 159 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.SLOMS, | 22 |
| abstract_inverted_index.better | 156 |
| abstract_inverted_index.hybrid | 97 |
| abstract_inverted_index.models | 5, 19 |
| abstract_inverted_index.paper, | 85 |
| abstract_inverted_index.robust | 39, 63 |
| abstract_inverted_index.SLAMSA, | 23 |
| abstract_inverted_index.against | 47 |
| abstract_inverted_index.privacy | 40, 49, 64, 76, 139 |
| abstract_inverted_index.propose | 18 |
| abstract_inverted_index.protect | 7, 74 |
| abstract_inverted_index.results | 146, 157 |
| abstract_inverted_index.suggest | 87 |
| abstract_inverted_index.version | 90 |
| abstract_inverted_index.approach | 99, 102, 154 |
| abstract_inverted_index.datasets | 9 |
| abstract_inverted_index.improved | 89 |
| abstract_inverted_index.l)-Angel | 107 |
| abstract_inverted_index.multiple | 8, 81, 124 |
| abstract_inverted_index.produces | 155 |
| abstract_inverted_index.prompted | 15 |
| abstract_inverted_index.proposed | 72, 133, 153 |
| abstract_inverted_index.records. | 82 |
| abstract_inverted_index.solution | 134 |
| abstract_inverted_index.utility. | 163 |
| abstract_inverted_index.analyzing | 138 |
| abstract_inverted_index.different | 48 |
| abstract_inverted_index.inability | 1 |
| abstract_inverted_index.modelling | 136 |
| abstract_inverted_index.sensitive | 12, 78, 125 |
| abstract_inverted_index.technique | 119 |
| abstract_inverted_index.High-Level | 142 |
| abstract_inverted_index.artificial | 109 |
| abstract_inverted_index.attributes | 13, 79 |
| abstract_inverted_index.efficiency | 161 |
| abstract_inverted_index.efficient. | 55 |
| abstract_inverted_index.experiment | 149 |
| abstract_inverted_index.knowledge, | 61 |
| abstract_inverted_index.segmenting | 121 |
| abstract_inverted_index.successful | 46 |
| abstract_inverted_index.violations | 140 |
| abstract_inverted_index.attributes. | 126 |
| abstract_inverted_index.demonstrate | 128, 150 |
| abstract_inverted_index.feasibility | 130 |
| abstract_inverted_index.researchers | 16 |
| abstract_inverted_index.traditional | 3 |
| abstract_inverted_index.disclosures, | 50 |
| abstract_inverted_index.insufficient | 35 |
| abstract_inverted_index.intelligence | 110 |
| abstract_inverted_index.performance. | 42 |
| abstract_inverted_index.segmentation | 118 |
| abstract_inverted_index.Generalization. | 104 |
| abstract_inverted_index.classification, | 115 |
| abstract_inverted_index.l)-Angelization | 44, 93 |
| abstract_inverted_index.high-dimensional | 117 |
| abstract_inverted_index.k)-Angelization, | 25 |
| abstract_inverted_index.l)-Angelization, | 28 |
| abstract_inverted_index.quasi-identifiers | 122 |
| abstract_inverted_index.privacy-preserving | 4, 101 |
| abstract_inverted_index.Fuzz-classification | 105 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5049449184 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I146429904 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.6878809 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |