GAIT based Behavioral Authentication using Hybrid Swarm based Feed Forward Neural Network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.14569/ijacsa.2020.0110939
Authentication of appropriate users for accessing the liable gadgets exists as one among the prime theme in security models. Illegal access of gadgets such as smart phones, laptops comes with an uninvited consequences, such as data theft, privacy breakage and a lot more. Straight forward approaches like pattern based security, password and pin based security are quite expensive in terms of memory where the user has to keep remembering the passwords and in case of any security issue risen then the password has to be changed and once again keep remembering the recent one. To avoid these issues, in this paper an effective GAIT based model is proposed with the hybridization of Artificial Neural Network model namely Feedforward Neural Network Model with Swarm based algorithm namely Krill Herd optimization algorithm (KH). The task of KH is to optimize the weight factor of FNN which leads to the convergence of optimal solution at the end of the run. The proposed model is examined with 6 different performance measures and compared with four different existing classification model. The performance analysis shows the significance of proposed model when compared with the existing algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14569/ijacsa.2020.0110939
- http://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3090011099
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3090011099Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14569/ijacsa.2020.0110939Digital Object Identifier
- Title
-
GAIT based Behavioral Authentication using Hybrid Swarm based Feed Forward Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Gogineni Krishna Chaitanya, K. Raja SekharList of authors in order
- Landing page
-
https://doi.org/10.14569/ijacsa.2020.0110939Publisher landing page
- PDF URL
-
https://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdfDirect OA link when available
- Concepts
-
Computer science, Password, Artificial neural network, Feedforward neural network, Particle swarm optimization, Authentication (law), Computer security, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3090011099 |
|---|---|
| doi | https://doi.org/10.14569/ijacsa.2020.0110939 |
| ids.doi | https://doi.org/10.14569/ijacsa.2020.0110939 |
| ids.mag | 3090011099 |
| ids.openalex | https://openalex.org/W3090011099 |
| fwci | 0.56614728 |
| type | article |
| title | GAIT based Behavioral Authentication using Hybrid Swarm based Feed Forward Neural Network |
| biblio.issue | 9 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11800 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9668999910354614 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | User Authentication and Security Systems |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9510999917984009 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9031202793121338 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C109297577 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7309533357620239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q161157 |
| concepts[1].display_name | Password |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.603698194026947 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C47702885 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5342522859573364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5441227 |
| concepts[3].display_name | Feedforward neural network |
| concepts[4].id | https://openalex.org/C85617194 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5080137252807617 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[4].display_name | Particle swarm optimization |
| concepts[5].id | https://openalex.org/C148417208 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4835386276245117 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4825882 |
| concepts[5].display_name | Authentication (law) |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46882861852645874 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.432798832654953 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4112378656864166 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9031202793121338 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/password |
| keywords[1].score | 0.7309533357620239 |
| keywords[1].display_name | Password |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.603698194026947 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/feedforward-neural-network |
| keywords[3].score | 0.5342522859573364 |
| keywords[3].display_name | Feedforward neural network |
| keywords[4].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[4].score | 0.5080137252807617 |
| keywords[4].display_name | Particle swarm optimization |
| keywords[5].id | https://openalex.org/keywords/authentication |
| keywords[5].score | 0.4835386276245117 |
| keywords[5].display_name | Authentication (law) |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.46882861852645874 |
| keywords[6].display_name | Computer security |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.432798832654953 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4112378656864166 |
| keywords[8].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.14569/ijacsa.2020.0110939 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23629721 |
| locations[0].source.issn | 2156-5570, 2158-107X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2156-5570 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Computer Science and Applications |
| locations[0].source.host_organization | https://openalex.org/P4310311819 |
| locations[0].source.host_organization_name | Science and Information Organization |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311819 |
| locations[0].source.host_organization_lineage_names | Science and Information Organization |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Computer Science and Applications |
| locations[0].landing_page_url | https://doi.org/10.14569/ijacsa.2020.0110939 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016113954 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3239-330X |
| authorships[0].author.display_name | Gogineni Krishna Chaitanya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gogineni Krishna Chaitanya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077681370 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4243-9700 |
| authorships[1].author.display_name | K. Raja Sekhar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation Vaddeswaram, 522502, Andhra Pradesh India |
| authorships[1].institutions[0].id | https://openalex.org/I875944469 |
| authorships[1].institutions[0].ror | https://ror.org/02k949197 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Krovi Raja |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation Vaddeswaram, 522502, Andhra Pradesh India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GAIT based Behavioral Authentication using Hybrid Swarm based Feed Forward Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11800 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9668999910354614 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | User Authentication and Security Systems |
| related_works | https://openalex.org/W143386018, https://openalex.org/W1004582678, https://openalex.org/W2656445685, https://openalex.org/W2357447513, https://openalex.org/W2378845890, https://openalex.org/W2358123629, https://openalex.org/W2496866879, https://openalex.org/W2028903792, https://openalex.org/W1555995843, https://openalex.org/W3125716114 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14569/ijacsa.2020.0110939 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23629721 |
| best_oa_location.source.issn | 2156-5570, 2158-107X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2156-5570 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310311819 |
| best_oa_location.source.host_organization_name | Science and Information Organization |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| best_oa_location.source.host_organization_lineage_names | Science and Information Organization |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.14569/ijacsa.2020.0110939 |
| primary_location.id | doi:10.14569/ijacsa.2020.0110939 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23629721 |
| primary_location.source.issn | 2156-5570, 2158-107X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2156-5570 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| primary_location.source.host_organization | https://openalex.org/P4310311819 |
| primary_location.source.host_organization_name | Science and Information Organization |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| primary_location.source.host_organization_lineage_names | Science and Information Organization |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://thesai.org/Downloads/Volume11No9/Paper_39-GAIT_based_Behavioral_Authentication.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| primary_location.landing_page_url | https://doi.org/10.14569/ijacsa.2020.0110939 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2914834208, https://openalex.org/W2938250600, https://openalex.org/W2983145121, https://openalex.org/W3015331232, https://openalex.org/W2965309076, https://openalex.org/W2788376670, https://openalex.org/W2980048908, https://openalex.org/W2959776022, https://openalex.org/W2994854728, https://openalex.org/W3007255691, https://openalex.org/W6762410335, https://openalex.org/W2944963830, https://openalex.org/W3006610377, https://openalex.org/W6757045674, https://openalex.org/W2899115116, https://openalex.org/W2981046606, https://openalex.org/W2962970093, https://openalex.org/W2903621324, https://openalex.org/W3015075740, https://openalex.org/W6756702256, https://openalex.org/W3006583835, https://openalex.org/W2900200659, https://openalex.org/W2218206653, https://openalex.org/W2904756156, https://openalex.org/W2995786667, https://openalex.org/W2944773730, https://openalex.org/W2904123522, https://openalex.org/W3104023962, https://openalex.org/W2803446603 |
| referenced_works_count | 29 |
| abstract_inverted_index.6 | 163 |
| abstract_inverted_index.a | 40 |
| abstract_inverted_index.KH | 134 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.an | 30, 101 |
| abstract_inverted_index.as | 10, 24, 34 |
| abstract_inverted_index.at | 151 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.in | 16, 58, 72, 98 |
| abstract_inverted_index.is | 106, 135, 160 |
| abstract_inverted_index.of | 1, 21, 60, 74, 111, 133, 141, 148, 154, 181 |
| abstract_inverted_index.to | 66, 83, 136, 145 |
| abstract_inverted_index.FNN | 142 |
| abstract_inverted_index.The | 131, 157, 175 |
| abstract_inverted_index.and | 39, 51, 71, 86, 167 |
| abstract_inverted_index.any | 75 |
| abstract_inverted_index.are | 55 |
| abstract_inverted_index.end | 153 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.has | 65, 82 |
| abstract_inverted_index.lot | 41 |
| abstract_inverted_index.one | 11 |
| abstract_inverted_index.pin | 52 |
| abstract_inverted_index.the | 6, 13, 63, 69, 80, 91, 109, 138, 146, 152, 155, 179, 187 |
| abstract_inverted_index.GAIT | 103 |
| abstract_inverted_index.Herd | 127 |
| abstract_inverted_index.case | 73 |
| abstract_inverted_index.data | 35 |
| abstract_inverted_index.four | 170 |
| abstract_inverted_index.keep | 67, 89 |
| abstract_inverted_index.like | 46 |
| abstract_inverted_index.once | 87 |
| abstract_inverted_index.one. | 93 |
| abstract_inverted_index.run. | 156 |
| abstract_inverted_index.such | 23, 33 |
| abstract_inverted_index.task | 132 |
| abstract_inverted_index.then | 79 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.user | 64 |
| abstract_inverted_index.when | 184 |
| abstract_inverted_index.with | 29, 108, 121, 162, 169, 186 |
| abstract_inverted_index.(KH). | 130 |
| abstract_inverted_index.Krill | 126 |
| abstract_inverted_index.Model | 120 |
| abstract_inverted_index.Swarm | 122 |
| abstract_inverted_index.again | 88 |
| abstract_inverted_index.among | 12 |
| abstract_inverted_index.avoid | 95 |
| abstract_inverted_index.based | 48, 53, 104, 123 |
| abstract_inverted_index.comes | 28 |
| abstract_inverted_index.issue | 77 |
| abstract_inverted_index.leads | 144 |
| abstract_inverted_index.model | 105, 115, 159, 183 |
| abstract_inverted_index.more. | 42 |
| abstract_inverted_index.paper | 100 |
| abstract_inverted_index.prime | 14 |
| abstract_inverted_index.quite | 56 |
| abstract_inverted_index.risen | 78 |
| abstract_inverted_index.shows | 178 |
| abstract_inverted_index.smart | 25 |
| abstract_inverted_index.terms | 59 |
| abstract_inverted_index.theme | 15 |
| abstract_inverted_index.these | 96 |
| abstract_inverted_index.users | 3 |
| abstract_inverted_index.where | 62 |
| abstract_inverted_index.which | 143 |
| abstract_inverted_index.Neural | 113, 118 |
| abstract_inverted_index.access | 20 |
| abstract_inverted_index.exists | 9 |
| abstract_inverted_index.factor | 140 |
| abstract_inverted_index.liable | 7 |
| abstract_inverted_index.memory | 61 |
| abstract_inverted_index.model. | 174 |
| abstract_inverted_index.namely | 116, 125 |
| abstract_inverted_index.recent | 92 |
| abstract_inverted_index.theft, | 36 |
| abstract_inverted_index.weight | 139 |
| abstract_inverted_index.Illegal | 19 |
| abstract_inverted_index.Network | 114, 119 |
| abstract_inverted_index.changed | 85 |
| abstract_inverted_index.forward | 44 |
| abstract_inverted_index.gadgets | 8, 22 |
| abstract_inverted_index.issues, | 97 |
| abstract_inverted_index.laptops | 27 |
| abstract_inverted_index.models. | 18 |
| abstract_inverted_index.optimal | 149 |
| abstract_inverted_index.pattern | 47 |
| abstract_inverted_index.phones, | 26 |
| abstract_inverted_index.privacy | 37 |
| abstract_inverted_index.Straight | 43 |
| abstract_inverted_index.analysis | 177 |
| abstract_inverted_index.breakage | 38 |
| abstract_inverted_index.compared | 168, 185 |
| abstract_inverted_index.examined | 161 |
| abstract_inverted_index.existing | 172, 188 |
| abstract_inverted_index.measures | 166 |
| abstract_inverted_index.optimize | 137 |
| abstract_inverted_index.password | 50, 81 |
| abstract_inverted_index.proposed | 107, 158, 182 |
| abstract_inverted_index.security | 17, 54, 76 |
| abstract_inverted_index.solution | 150 |
| abstract_inverted_index.accessing | 5 |
| abstract_inverted_index.algorithm | 124, 129 |
| abstract_inverted_index.different | 164, 171 |
| abstract_inverted_index.effective | 102 |
| abstract_inverted_index.expensive | 57 |
| abstract_inverted_index.passwords | 70 |
| abstract_inverted_index.security, | 49 |
| abstract_inverted_index.uninvited | 31 |
| abstract_inverted_index.Artificial | 112 |
| abstract_inverted_index.approaches | 45 |
| abstract_inverted_index.Feedforward | 117 |
| abstract_inverted_index.algorithms. | 189 |
| abstract_inverted_index.appropriate | 2 |
| abstract_inverted_index.convergence | 147 |
| abstract_inverted_index.performance | 165, 176 |
| abstract_inverted_index.remembering | 68, 90 |
| abstract_inverted_index.optimization | 128 |
| abstract_inverted_index.significance | 180 |
| abstract_inverted_index.consequences, | 32 |
| abstract_inverted_index.hybridization | 110 |
| abstract_inverted_index.Authentication | 0 |
| abstract_inverted_index.classification | 173 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.75259909 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |