Gait Stability Measurement by Using Average Entropy Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/e23040412
Gait stability has been measured by using many entropy-based methods. However, the relation between the entropy values and gait stability is worth further investigation. A research reported that average entropy (AE), a measure of disorder, could measure the static standing postural stability better than multiscale entropy and entropy of entropy (EoE), two measures of complexity. This study tested the validity of AE in gait stability measurement from the viewpoint of the disorder. For comparison, another five disorders, the EoE, and two traditional metrics methods were, respectively, used to measure the degrees of disorder and complexity of 10 step interval (SPI) and 79 stride interval (SI) time series, individually. As a result, every one of the 10 participants exhibited a relatively high AE value of the SPI when walking with eyes closed and a relatively low AE value when walking with eyes open. Most of the AE values of the SI of the 53 diseased subjects were greater than those of the 26 healthy subjects. A maximal overall accuracy of AE in differentiating the healthy from the diseased was 91.1%. Similar features also exists on those 5 disorder measurements but do not exist on the EoE values. Nevertheless, the EoE versus AE plot of the SI also exhibits an inverted U relation, consistent with the hypothesis for physiologic signals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e23040412
- https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538
- OA Status
- gold
- Cited By
- 7
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3141378601
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3141378601Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e23040412Digital Object Identifier
- Title
-
Gait Stability Measurement by Using Average EntropyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-31Full publication date if available
- Authors
-
Han-Ping Huang, Chang Francis Hsu, Yi-Chih Mao, Long Hsu, Sien ChiList of authors in order
- Landing page
-
https://doi.org/10.3390/e23040412Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538Direct OA link when available
- Concepts
-
STRIDE, Entropy (arrow of time), Mathematics, Sample entropy, Stability (learning theory), Approximate entropy, Statistics, Physical medicine and rehabilitation, Medicine, Computer science, Thermodynamics, Physics, Time series, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3141378601 |
|---|---|
| doi | https://doi.org/10.3390/e23040412 |
| ids.doi | https://doi.org/10.3390/e23040412 |
| ids.mag | 3141378601 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33807223 |
| ids.openalex | https://openalex.org/W3141378601 |
| fwci | 1.34898572 |
| type | article |
| title | Gait Stability Measurement by Using Average Entropy |
| awards[0].id | https://openalex.org/G1024553974 |
| awards[0].funder_id | https://openalex.org/F4320322795 |
| awards[0].display_name | |
| awards[0].funder_award_id | MOST 108-2221-E-009 -055 |
| awards[0].funder_display_name | Ministry of Science and Technology, Taiwan |
| biblio.issue | 4 |
| biblio.volume | 23 |
| biblio.last_page | 412 |
| biblio.first_page | 412 |
| topics[0].id | https://openalex.org/T10114 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3612 |
| topics[0].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[0].display_name | Balance, Gait, and Falls Prevention |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T11196 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9657999873161316 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Non-Invasive Vital Sign Monitoring |
| funders[0].id | https://openalex.org/F4320322795 |
| funders[0].ror | https://ror.org/02kv4zf79 |
| funders[0].display_name | Ministry of Science and Technology, Taiwan |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C18007350 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6870383024215698 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7394815 |
| concepts[0].display_name | STRIDE |
| concepts[1].id | https://openalex.org/C106301342 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5869104266166687 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[1].display_name | Entropy (arrow of time) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5526430010795593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C66696666 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5366169214248657 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17105612 |
| concepts[3].display_name | Sample entropy |
| concepts[4].id | https://openalex.org/C112972136 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46964070200920105 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[4].display_name | Stability (learning theory) |
| concepts[5].id | https://openalex.org/C86859247 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4346914291381836 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4781760 |
| concepts[5].display_name | Approximate entropy |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36565929651260376 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C99508421 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28655651211738586 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[7].display_name | Physical medicine and rehabilitation |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2412508726119995 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21689677238464355 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13347294926643372 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1330450475215912 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C151406439 |
| concepts[12].level | 2 |
| concepts[12].score | 0.12159758806228638 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[12].display_name | Time series |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10453015565872192 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/stride |
| keywords[0].score | 0.6870383024215698 |
| keywords[0].display_name | STRIDE |
| keywords[1].id | https://openalex.org/keywords/entropy |
| keywords[1].score | 0.5869104266166687 |
| keywords[1].display_name | Entropy (arrow of time) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5526430010795593 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/sample-entropy |
| keywords[3].score | 0.5366169214248657 |
| keywords[3].display_name | Sample entropy |
| keywords[4].id | https://openalex.org/keywords/stability |
| keywords[4].score | 0.46964070200920105 |
| keywords[4].display_name | Stability (learning theory) |
| keywords[5].id | https://openalex.org/keywords/approximate-entropy |
| keywords[5].score | 0.4346914291381836 |
| keywords[5].display_name | Approximate entropy |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.36565929651260376 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[7].score | 0.28655651211738586 |
| keywords[7].display_name | Physical medicine and rehabilitation |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.2412508726119995 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.21689677238464355 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/thermodynamics |
| keywords[10].score | 0.13347294926643372 |
| keywords[10].display_name | Thermodynamics |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.1330450475215912 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/time-series |
| keywords[12].score | 0.12159758806228638 |
| keywords[12].display_name | Time series |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.10453015565872192 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/e23040412 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e23040412 |
| locations[1].id | pmid:33807223 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33807223 |
| locations[2].id | pmh:oai:doaj.org/article:39100352ccc148079f7194d968971431 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 23, Iss 4, p 412 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/39100352ccc148079f7194d968971431 |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/23/4/412/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy; Volume 23; Issue 4; Pages: 412 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e23040412 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8067110 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8067110 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5084665302 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5099-941X |
| authorships[0].author.display_name | Han-Ping Huang |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148366613 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I148366613 |
| authorships[0].institutions[0].ror | https://ror.org/00se2k293 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I148366613 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Yang Ming Chiao Tung University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Han-Ping Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[1].author.id | https://openalex.org/A5090716072 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9254-9364 |
| authorships[1].author.display_name | Chang Francis Hsu |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148366613 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I148366613 |
| authorships[1].institutions[0].ror | https://ror.org/00se2k293 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148366613 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Yang Ming Chiao Tung University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang Francis Hsu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[2].author.id | https://openalex.org/A5009497173 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yi-Chih Mao |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148366613 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Industry-Academia Collaboration, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I148366613 |
| authorships[2].institutions[0].ror | https://ror.org/00se2k293 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I148366613 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Yang Ming Chiao Tung University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yi-Chih Mao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Industry-Academia Collaboration, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[3].author.id | https://openalex.org/A5103575517 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Long Hsu |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148366613 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I148366613 |
| authorships[3].institutions[0].ror | https://ror.org/00se2k293 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I148366613 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Yang Ming Chiao Tung University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Long Hsu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[4].author.id | https://openalex.org/A5107005626 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8674-1963 |
| authorships[4].author.display_name | Sien Chi |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I148366613 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I148366613 |
| authorships[4].institutions[0].ror | https://ror.org/00se2k293 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I148366613 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | National Yang Ming Chiao Tung University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sien Chi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gait Stability Measurement by Using Average Entropy |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10114 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3612 |
| primary_topic.subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| primary_topic.display_name | Balance, Gait, and Falls Prevention |
| related_works | https://openalex.org/W2093589470, https://openalex.org/W2415751681, https://openalex.org/W1862394037, https://openalex.org/W2889925888, https://openalex.org/W3121271574, https://openalex.org/W4205160129, https://openalex.org/W2084594947, https://openalex.org/W2890995276, https://openalex.org/W4381804751, https://openalex.org/W2076258781 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e23040412 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e23040412 |
| primary_location.id | doi:10.3390/e23040412 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/23/4/412/pdf?version=1617938538 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e23040412 |
| publication_date | 2021-03-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2150797526, https://openalex.org/W6639011195, https://openalex.org/W2793984799, https://openalex.org/W2118183148, https://openalex.org/W2964070924, https://openalex.org/W2164104048, https://openalex.org/W2070051876, https://openalex.org/W2333775360, https://openalex.org/W2792354770, https://openalex.org/W2144024103, https://openalex.org/W2152702278, https://openalex.org/W3132747506, https://openalex.org/W2974377656, https://openalex.org/W2917255080, https://openalex.org/W2273310283, https://openalex.org/W2093266575, https://openalex.org/W2765520681, https://openalex.org/W4388331996, https://openalex.org/W2078940173, https://openalex.org/W1999320110, https://openalex.org/W2072388473, https://openalex.org/W3124758257, https://openalex.org/W2155952367, https://openalex.org/W2115797607, https://openalex.org/W2790429709, https://openalex.org/W2138906212, https://openalex.org/W3133859036, https://openalex.org/W1862394037, https://openalex.org/W2001619934, https://openalex.org/W2170505850, https://openalex.org/W3092593284, https://openalex.org/W1585976120, https://openalex.org/W2982375095, https://openalex.org/W2946484517, https://openalex.org/W1996410571, https://openalex.org/W3164135786, https://openalex.org/W1848637253, https://openalex.org/W2162800060, https://openalex.org/W2043559349, https://openalex.org/W3105474450 |
| referenced_works_count | 40 |
| abstract_inverted_index.5 | 185 |
| abstract_inverted_index.A | 24, 164 |
| abstract_inverted_index.U | 209 |
| abstract_inverted_index.a | 31, 109, 118, 132 |
| abstract_inverted_index.10 | 96, 115 |
| abstract_inverted_index.26 | 161 |
| abstract_inverted_index.53 | 152 |
| abstract_inverted_index.79 | 101 |
| abstract_inverted_index.AE | 61, 121, 135, 145, 169, 200 |
| abstract_inverted_index.As | 108 |
| abstract_inverted_index.SI | 149, 204 |
| abstract_inverted_index.an | 207 |
| abstract_inverted_index.by | 5 |
| abstract_inverted_index.do | 189 |
| abstract_inverted_index.in | 62, 170 |
| abstract_inverted_index.is | 20 |
| abstract_inverted_index.of | 33, 48, 53, 60, 69, 91, 95, 113, 123, 143, 147, 150, 159, 168, 202 |
| abstract_inverted_index.on | 183, 192 |
| abstract_inverted_index.to | 87 |
| abstract_inverted_index.EoE | 194, 198 |
| abstract_inverted_index.For | 72 |
| abstract_inverted_index.SPI | 125 |
| abstract_inverted_index.and | 17, 46, 79, 93, 100, 131 |
| abstract_inverted_index.but | 188 |
| abstract_inverted_index.for | 215 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.low | 134 |
| abstract_inverted_index.not | 190 |
| abstract_inverted_index.one | 112 |
| abstract_inverted_index.the | 11, 14, 37, 58, 67, 70, 77, 89, 114, 124, 144, 148, 151, 160, 172, 175, 193, 197, 203, 213 |
| abstract_inverted_index.two | 51, 80 |
| abstract_inverted_index.was | 177 |
| abstract_inverted_index.(SI) | 104 |
| abstract_inverted_index.EoE, | 78 |
| abstract_inverted_index.Gait | 0 |
| abstract_inverted_index.Most | 142 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.also | 181, 205 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.eyes | 129, 140 |
| abstract_inverted_index.five | 75 |
| abstract_inverted_index.from | 66, 174 |
| abstract_inverted_index.gait | 18, 63 |
| abstract_inverted_index.high | 120 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.plot | 201 |
| abstract_inverted_index.step | 97 |
| abstract_inverted_index.than | 43, 157 |
| abstract_inverted_index.that | 27 |
| abstract_inverted_index.time | 105 |
| abstract_inverted_index.used | 86 |
| abstract_inverted_index.were | 155 |
| abstract_inverted_index.when | 126, 137 |
| abstract_inverted_index.with | 128, 139, 212 |
| abstract_inverted_index.(AE), | 30 |
| abstract_inverted_index.(SPI) | 99 |
| abstract_inverted_index.could | 35 |
| abstract_inverted_index.every | 111 |
| abstract_inverted_index.exist | 191 |
| abstract_inverted_index.open. | 141 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.those | 158, 184 |
| abstract_inverted_index.using | 6 |
| abstract_inverted_index.value | 122, 136 |
| abstract_inverted_index.were, | 84 |
| abstract_inverted_index.worth | 21 |
| abstract_inverted_index.(EoE), | 50 |
| abstract_inverted_index.91.1%. | 178 |
| abstract_inverted_index.better | 42 |
| abstract_inverted_index.closed | 130 |
| abstract_inverted_index.exists | 182 |
| abstract_inverted_index.static | 38 |
| abstract_inverted_index.stride | 102 |
| abstract_inverted_index.tested | 57 |
| abstract_inverted_index.values | 16, 146 |
| abstract_inverted_index.versus | 199 |
| abstract_inverted_index.Similar | 179 |
| abstract_inverted_index.another | 74 |
| abstract_inverted_index.average | 28 |
| abstract_inverted_index.between | 13 |
| abstract_inverted_index.degrees | 90 |
| abstract_inverted_index.entropy | 15, 29, 45, 47, 49 |
| abstract_inverted_index.further | 22 |
| abstract_inverted_index.greater | 156 |
| abstract_inverted_index.healthy | 162, 173 |
| abstract_inverted_index.maximal | 165 |
| abstract_inverted_index.measure | 32, 36, 88 |
| abstract_inverted_index.methods | 83 |
| abstract_inverted_index.metrics | 82 |
| abstract_inverted_index.overall | 166 |
| abstract_inverted_index.result, | 110 |
| abstract_inverted_index.series, | 106 |
| abstract_inverted_index.values. | 195 |
| abstract_inverted_index.walking | 127, 138 |
| abstract_inverted_index.However, | 10 |
| abstract_inverted_index.accuracy | 167 |
| abstract_inverted_index.diseased | 153, 176 |
| abstract_inverted_index.disorder | 92, 186 |
| abstract_inverted_index.exhibits | 206 |
| abstract_inverted_index.features | 180 |
| abstract_inverted_index.interval | 98, 103 |
| abstract_inverted_index.inverted | 208 |
| abstract_inverted_index.measured | 4 |
| abstract_inverted_index.measures | 52 |
| abstract_inverted_index.methods. | 9 |
| abstract_inverted_index.postural | 40 |
| abstract_inverted_index.relation | 12 |
| abstract_inverted_index.reported | 26 |
| abstract_inverted_index.research | 25 |
| abstract_inverted_index.signals. | 217 |
| abstract_inverted_index.standing | 39 |
| abstract_inverted_index.subjects | 154 |
| abstract_inverted_index.validity | 59 |
| abstract_inverted_index.disorder, | 34 |
| abstract_inverted_index.disorder. | 71 |
| abstract_inverted_index.exhibited | 117 |
| abstract_inverted_index.relation, | 210 |
| abstract_inverted_index.stability | 1, 19, 41, 64 |
| abstract_inverted_index.subjects. | 163 |
| abstract_inverted_index.viewpoint | 68 |
| abstract_inverted_index.complexity | 94 |
| abstract_inverted_index.consistent | 211 |
| abstract_inverted_index.disorders, | 76 |
| abstract_inverted_index.hypothesis | 214 |
| abstract_inverted_index.multiscale | 44 |
| abstract_inverted_index.relatively | 119, 133 |
| abstract_inverted_index.comparison, | 73 |
| abstract_inverted_index.complexity. | 54 |
| abstract_inverted_index.measurement | 65 |
| abstract_inverted_index.physiologic | 216 |
| abstract_inverted_index.traditional | 81 |
| abstract_inverted_index.measurements | 187 |
| abstract_inverted_index.participants | 116 |
| abstract_inverted_index.Nevertheless, | 196 |
| abstract_inverted_index.entropy-based | 8 |
| abstract_inverted_index.individually. | 107 |
| abstract_inverted_index.respectively, | 85 |
| abstract_inverted_index.investigation. | 23 |
| abstract_inverted_index.differentiating | 171 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5107005626 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I148366613 |
| citation_normalized_percentile.value | 0.78786381 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |