Galaxy morphological classification using Dynamic Multiscale Attention Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/mnras/staf1037
The implementation of large-scale digital sky surveys has collected enormous photometric images, making galaxy morphology classification a current research hotspot. This paper presents a galaxy morphology classification network based on dynamic large convolution kernels and attention feature fusion, named as the Dynamic Multiscale Attention Galaxy Network (DMAGNet). In this study, 15 266 galaxy images from the Galaxy Zoo DECaLS (Dark Energy Camera Legacy Survey) project are used with six categories of galaxy morphologies. The six categories are edge-on, cigar, in-between, round, spiral, and merger. On the test set, the model is demonstrated with superior performance, achieving 97.1 per cent accuracy, 96.8 per cent recall, and a 96.8 per cent F1 score. Furthermore, the proposed network is subjected to extensive evaluation and ablation experiments, and the t-distributed stochastic neighbour embedding (t-SNE) method is used to visualize the morphological features extracted from the test set. The accuracy of Maxvit is 0.969, while the accuracy of DMAGNet reaches 0.971. The experimental results show that this model outperforms known classification models in the galaxy morphology classification task. Finally, this method was applied to 14 174 190 galaxy images from the BASS + MzLS data set of the DESI Legacy Surveys, constructing a galaxy catalogue covering six morphological categories: Edge-On (192 577), In-Between (2353 937), Cigar (299 725), Round (353 358), Spiral (16 067), and Merger (1266 961). Additionally, an Error column was introduced, containing a total of 9691 564 samples, to label images that may be damaged or have quality issues by incorporating information from other catalogues.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/mnras/staf1037
- https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdf
- OA Status
- gold
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412364762
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412364762Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/mnras/staf1037Digital Object Identifier
- Title
-
Galaxy morphological classification using Dynamic Multiscale Attention NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-07Full publication date if available
- Authors
-
Brigette Ma, Bo Qiu, A-Li Luo, Qi Li, Fuji Ren, Mengyao LiList of authors in order
- Landing page
-
https://doi.org/10.1093/mnras/staf1037Publisher landing page
- PDF URL
-
https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdfDirect OA link when available
- Concepts
-
Physics, Astrophysics, Galaxy, Scale (ratio), Astronomy, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412364762 |
|---|---|
| doi | https://doi.org/10.1093/mnras/staf1037 |
| ids.doi | https://doi.org/10.1093/mnras/staf1037 |
| ids.openalex | https://openalex.org/W4412364762 |
| fwci | 0.0 |
| type | article |
| title | Galaxy morphological classification using Dynamic Multiscale Attention Network |
| awards[0].id | https://openalex.org/G8562731649 |
| awards[0].funder_id | https://openalex.org/F4320323993 |
| awards[0].display_name | |
| awards[0].funder_award_id | ASFC-2024M071074001 |
| awards[0].funder_display_name | Natural Science Foundation of Tianjin City |
| awards[1].id | https://openalex.org/G2064054747 |
| awards[1].funder_id | https://openalex.org/F4320323993 |
| awards[1].display_name | |
| awards[1].funder_award_id | 22JCYBJC00410 |
| awards[1].funder_display_name | Natural Science Foundation of Tianjin City |
| awards[2].id | https://openalex.org/G2044767128 |
| awards[2].funder_id | https://openalex.org/F4320321921 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2025A1515012126 |
| awards[2].funder_display_name | Natural Science Foundation of Guangdong Province |
| biblio.issue | 2 |
| biblio.volume | 541 |
| biblio.last_page | 1939 |
| biblio.first_page | 1928 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.982699990272522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9812999963760376 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9739000201225281 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| funders[0].id | https://openalex.org/F4320321921 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Guangdong Province |
| funders[1].id | https://openalex.org/F4320323993 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Tianjin City |
| is_xpac | False |
| apc_list.value | 2310 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2833 |
| apc_paid.value | 2310 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2833 |
| concepts[0].id | https://openalex.org/C121332964 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8991289138793945 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[0].display_name | Physics |
| concepts[1].id | https://openalex.org/C44870925 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5920777320861816 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[1].display_name | Astrophysics |
| concepts[2].id | https://openalex.org/C98444146 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5880424380302429 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[2].display_name | Galaxy |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5363467931747437 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C1276947 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44670236110687256 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[4].display_name | Astronomy |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/physics |
| keywords[0].score | 0.8991289138793945 |
| keywords[0].display_name | Physics |
| keywords[1].id | https://openalex.org/keywords/astrophysics |
| keywords[1].score | 0.5920777320861816 |
| keywords[1].display_name | Astrophysics |
| keywords[2].id | https://openalex.org/keywords/galaxy |
| keywords[2].score | 0.5880424380302429 |
| keywords[2].display_name | Galaxy |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5363467931747437 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/astronomy |
| keywords[4].score | 0.44670236110687256 |
| keywords[4].display_name | Astronomy |
| language | en |
| locations[0].id | doi:10.1093/mnras/staf1037 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195663288 |
| locations[0].source.issn | 0035-8711, 1365-2966, 1365-8711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0035-8711 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].landing_page_url | https://doi.org/10.1093/mnras/staf1037 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5090863040 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4802-1102 |
| authorships[0].author.display_name | Brigette Ma |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[0].institutions[0].id | https://openalex.org/I184843921 |
| authorships[0].institutions[0].ror | https://ror.org/018hded08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baisen Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[1].author.id | https://openalex.org/A5067314253 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0191-3413 |
| authorships[1].author.display_name | Bo Qiu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Intelligent Unmanned Systems, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[1].institutions[0].id | https://openalex.org/I92403157 |
| authorships[1].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Qiu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Intelligent Unmanned Systems, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[2].author.id | https://openalex.org/A5006467926 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7865-2648 |
| authorships[2].author.display_name | A-Li Luo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210164580, https://openalex.org/I4210165038 |
| authorships[2].affiliations[0].raw_affiliation_string | National Astronomical Observatories, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210164580 |
| authorships[2].institutions[0].ror | https://ror.org/058pyyv44 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Astronomical Observatories |
| authorships[2].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[2].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ali Luo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Astronomical Observatories, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[3].author.id | https://openalex.org/A5100759715 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3930-6715 |
| authorships[3].author.display_name | Qi Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[3].institutions[0].id | https://openalex.org/I184843921 |
| authorships[3].institutions[0].ror | https://ror.org/018hded08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hebei University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qi Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[4].author.id | https://openalex.org/A5071943346 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4860-9184 |
| authorships[4].author.display_name | Fuji Ren |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | The Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China , Shenzhen 518110 , |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I150229711 |
| authorships[4].affiliations[1].raw_affiliation_string | College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210145761 |
| authorships[4].affiliations[2].raw_affiliation_string | The Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].institutions[1].id | https://openalex.org/I150229711 |
| authorships[4].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fuji Ren |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China, The Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China , Shenzhen 518110 ,, The Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China |
| authorships[5].author.id | https://openalex.org/A5111259444 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mengyao Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[5].institutions[0].id | https://openalex.org/I184843921 |
| authorships[5].institutions[0].ror | https://ror.org/018hded08 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hebei University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mengyao Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Galaxy morphological classification using Dynamic Multiscale Attention Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.982699990272522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W4321479465, https://openalex.org/W4404409304, https://openalex.org/W4394637313, https://openalex.org/W1968347830, https://openalex.org/W2016259039 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/mnras/staf1037 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195663288 |
| best_oa_location.source.issn | 0035-8711, 1365-2966, 1365-8711 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0035-8711 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Monthly Notices of the Royal Astronomical Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Monthly Notices of the Royal Astronomical Society |
| best_oa_location.landing_page_url | https://doi.org/10.1093/mnras/staf1037 |
| primary_location.id | doi:10.1093/mnras/staf1037 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195663288 |
| primary_location.source.issn | 0035-8711, 1365-2966, 1365-8711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0035-8711 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staf1037/63734445/staf1037.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.landing_page_url | https://doi.org/10.1093/mnras/staf1037 |
| publication_date | 2025-07-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2227274187, https://openalex.org/W2044738244, https://openalex.org/W2768455873, https://openalex.org/W1987472719, https://openalex.org/W3111030224, https://openalex.org/W2467225246, https://openalex.org/W2515239931, https://openalex.org/W4297302518, https://openalex.org/W4378174676, https://openalex.org/W1924655545, https://openalex.org/W4388098534, https://openalex.org/W4312191768, https://openalex.org/W3096739052, https://openalex.org/W2603384647, https://openalex.org/W2170505850, https://openalex.org/W3203256536, https://openalex.org/W4390058673, https://openalex.org/W4327566316, https://openalex.org/W4392971963, https://openalex.org/W2883005809, https://openalex.org/W4236965008, https://openalex.org/W1678900085 |
| referenced_works_count | 22 |
| abstract_inverted_index.+ | 188 |
| abstract_inverted_index.a | 17, 24, 106, 198, 231 |
| abstract_inverted_index.14 | 180 |
| abstract_inverted_index.15 | 51 |
| abstract_inverted_index.F1 | 110 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.On | 85 |
| abstract_inverted_index.an | 225 |
| abstract_inverted_index.as | 40 |
| abstract_inverted_index.be | 242 |
| abstract_inverted_index.by | 248 |
| abstract_inverted_index.in | 168 |
| abstract_inverted_index.is | 91, 116, 132, 148 |
| abstract_inverted_index.of | 3, 71, 146, 153, 192, 233 |
| abstract_inverted_index.on | 30 |
| abstract_inverted_index.or | 244 |
| abstract_inverted_index.to | 118, 134, 179, 237 |
| abstract_inverted_index.(16 | 218 |
| abstract_inverted_index.174 | 181 |
| abstract_inverted_index.190 | 182 |
| abstract_inverted_index.266 | 52 |
| abstract_inverted_index.564 | 235 |
| abstract_inverted_index.The | 1, 74, 144, 157 |
| abstract_inverted_index.Zoo | 58 |
| abstract_inverted_index.and | 35, 83, 105, 121, 124, 220 |
| abstract_inverted_index.are | 66, 77 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.may | 241 |
| abstract_inverted_index.per | 98, 102, 108 |
| abstract_inverted_index.set | 191 |
| abstract_inverted_index.six | 69, 75, 202 |
| abstract_inverted_index.sky | 6 |
| abstract_inverted_index.the | 41, 56, 86, 89, 113, 125, 136, 141, 151, 169, 186, 193 |
| abstract_inverted_index.was | 177, 228 |
| abstract_inverted_index.(192 | 206 |
| abstract_inverted_index.(299 | 212 |
| abstract_inverted_index.(353 | 215 |
| abstract_inverted_index.96.8 | 101, 107 |
| abstract_inverted_index.9691 | 234 |
| abstract_inverted_index.97.1 | 97 |
| abstract_inverted_index.BASS | 187 |
| abstract_inverted_index.DESI | 194 |
| abstract_inverted_index.MzLS | 189 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.cent | 99, 103, 109 |
| abstract_inverted_index.data | 190 |
| abstract_inverted_index.from | 55, 140, 185, 251 |
| abstract_inverted_index.have | 245 |
| abstract_inverted_index.set, | 88 |
| abstract_inverted_index.set. | 143 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.test | 87, 142 |
| abstract_inverted_index.that | 161, 240 |
| abstract_inverted_index.this | 49, 162, 175 |
| abstract_inverted_index.used | 67, 133 |
| abstract_inverted_index.with | 68, 93 |
| abstract_inverted_index.(1266 | 222 |
| abstract_inverted_index.(2353 | 209 |
| abstract_inverted_index.(Dark | 60 |
| abstract_inverted_index.067), | 219 |
| abstract_inverted_index.358), | 216 |
| abstract_inverted_index.577), | 207 |
| abstract_inverted_index.725), | 213 |
| abstract_inverted_index.937), | 210 |
| abstract_inverted_index.961). | 223 |
| abstract_inverted_index.Cigar | 211 |
| abstract_inverted_index.Error | 226 |
| abstract_inverted_index.Round | 214 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.known | 165 |
| abstract_inverted_index.label | 238 |
| abstract_inverted_index.large | 32 |
| abstract_inverted_index.model | 90, 163 |
| abstract_inverted_index.named | 39 |
| abstract_inverted_index.other | 252 |
| abstract_inverted_index.paper | 22 |
| abstract_inverted_index.task. | 173 |
| abstract_inverted_index.total | 232 |
| abstract_inverted_index.while | 150 |
| abstract_inverted_index.0.969, | 149 |
| abstract_inverted_index.0.971. | 156 |
| abstract_inverted_index.Camera | 62 |
| abstract_inverted_index.DECaLS | 59 |
| abstract_inverted_index.Energy | 61 |
| abstract_inverted_index.Galaxy | 45, 57 |
| abstract_inverted_index.Legacy | 63, 195 |
| abstract_inverted_index.Maxvit | 147 |
| abstract_inverted_index.Merger | 221 |
| abstract_inverted_index.Spiral | 217 |
| abstract_inverted_index.cigar, | 79 |
| abstract_inverted_index.column | 227 |
| abstract_inverted_index.galaxy | 14, 25, 53, 72, 170, 183, 199 |
| abstract_inverted_index.images | 54, 184, 239 |
| abstract_inverted_index.issues | 247 |
| abstract_inverted_index.making | 13 |
| abstract_inverted_index.method | 131, 176 |
| abstract_inverted_index.models | 167 |
| abstract_inverted_index.round, | 81 |
| abstract_inverted_index.score. | 111 |
| abstract_inverted_index.study, | 50 |
| abstract_inverted_index.(t-SNE) | 130 |
| abstract_inverted_index.DMAGNet | 154 |
| abstract_inverted_index.Dynamic | 42 |
| abstract_inverted_index.Edge-On | 205 |
| abstract_inverted_index.Network | 46 |
| abstract_inverted_index.Survey) | 64 |
| abstract_inverted_index.applied | 178 |
| abstract_inverted_index.current | 18 |
| abstract_inverted_index.damaged | 243 |
| abstract_inverted_index.digital | 5 |
| abstract_inverted_index.dynamic | 31 |
| abstract_inverted_index.feature | 37 |
| abstract_inverted_index.fusion, | 38 |
| abstract_inverted_index.images, | 12 |
| abstract_inverted_index.kernels | 34 |
| abstract_inverted_index.merger. | 84 |
| abstract_inverted_index.network | 28, 115 |
| abstract_inverted_index.project | 65 |
| abstract_inverted_index.quality | 246 |
| abstract_inverted_index.reaches | 155 |
| abstract_inverted_index.recall, | 104 |
| abstract_inverted_index.results | 159 |
| abstract_inverted_index.spiral, | 82 |
| abstract_inverted_index.surveys | 7 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Finally, | 174 |
| abstract_inverted_index.Surveys, | 196 |
| abstract_inverted_index.ablation | 122 |
| abstract_inverted_index.accuracy | 145, 152 |
| abstract_inverted_index.covering | 201 |
| abstract_inverted_index.edge-on, | 78 |
| abstract_inverted_index.enormous | 10 |
| abstract_inverted_index.features | 138 |
| abstract_inverted_index.hotspot. | 20 |
| abstract_inverted_index.presents | 23 |
| abstract_inverted_index.proposed | 114 |
| abstract_inverted_index.research | 19 |
| abstract_inverted_index.samples, | 236 |
| abstract_inverted_index.superior | 94 |
| abstract_inverted_index.Attention | 44 |
| abstract_inverted_index.accuracy, | 100 |
| abstract_inverted_index.achieving | 96 |
| abstract_inverted_index.attention | 36 |
| abstract_inverted_index.catalogue | 200 |
| abstract_inverted_index.collected | 9 |
| abstract_inverted_index.embedding | 129 |
| abstract_inverted_index.extensive | 119 |
| abstract_inverted_index.extracted | 139 |
| abstract_inverted_index.neighbour | 128 |
| abstract_inverted_index.subjected | 117 |
| abstract_inverted_index.visualize | 135 |
| abstract_inverted_index.(DMAGNet). | 47 |
| abstract_inverted_index.In-Between | 208 |
| abstract_inverted_index.Multiscale | 43 |
| abstract_inverted_index.categories | 70, 76 |
| abstract_inverted_index.containing | 230 |
| abstract_inverted_index.evaluation | 120 |
| abstract_inverted_index.morphology | 15, 26, 171 |
| abstract_inverted_index.stochastic | 127 |
| abstract_inverted_index.catalogues. | 253 |
| abstract_inverted_index.categories: | 204 |
| abstract_inverted_index.convolution | 33 |
| abstract_inverted_index.in-between, | 80 |
| abstract_inverted_index.information | 250 |
| abstract_inverted_index.introduced, | 229 |
| abstract_inverted_index.large-scale | 4 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.photometric | 11 |
| abstract_inverted_index.Furthermore, | 112 |
| abstract_inverted_index.constructing | 197 |
| abstract_inverted_index.demonstrated | 92 |
| abstract_inverted_index.experimental | 158 |
| abstract_inverted_index.experiments, | 123 |
| abstract_inverted_index.performance, | 95 |
| abstract_inverted_index.Additionally, | 224 |
| abstract_inverted_index.incorporating | 249 |
| abstract_inverted_index.morphological | 137, 203 |
| abstract_inverted_index.morphologies. | 73 |
| abstract_inverted_index.t-distributed | 126 |
| abstract_inverted_index.classification | 16, 27, 166, 172 |
| abstract_inverted_index.implementation | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.27506728 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |