Gamer in the scanner : Event-related analysis of fMRI activity during retro videogame play guided by automated annotations of game content Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/uakq9
In recent years, videogames have gathered interest in cognitive neuroscience for their potential to study cognition in dynamical and naturalistic contexts. Yet, inherent game complexity can push traditional modeling to its limits, and current annotation methodologies may not fully capture the depth of their content. Neuroimaging studies have resorted to manual annotations or employed modified game versions that offer greater experimental control, both approaches limiting and labor-intensive. Here, we introduce an innovative approach using the gym-retro Python library to emulate a retro action-platformer, Shinobi III: Return of the Ninja Master (Sega, 1993), which enables automated annotations from the game's memory states. We demonstrate how this method facilitates the study of the neural basis of game events, including player actions (jumping, hitting) and feedback events (killing an enemy or being hit). Four individuals played Shinobi while undergoing functional magnetic resonance magnetic imaging (fMRI). We used automated game annotation to derive event-based general linear models of the BOLD signal in each subject, and showed common and subject-specific activation patterns in visual and sensori-motor cortices. Multi-voxel pattern analysis (MVPA) conducted on session-level annotation-derived activation maps achieved highly accurate brain decoding across all annotations. Given that the gym-retro emulation platform supports over a thousand games, this study underscores the potential of automated game annotations to study complex cognitive processes in dynamic settings across a broad game spectrum.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/uakq9
- https://osf.io/uakq9/download
- OA Status
- gold
- Cited By
- 1
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388002190
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388002190Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/uakq9Digital Object Identifier
- Title
-
Gamer in the scanner : Event-related analysis of fMRI activity during retro videogame play guided by automated annotations of game contentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-27Full publication date if available
- Authors
-
Yann Harel, Basile Pinsard, Julie A. Boyle, André Cyr, Maximilien Le Clei, Paul-Henri Mignot, Marie St‐Laurent, Karim Jerbi, Pierre BellecList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/uakq9Publisher landing page
- PDF URL
-
https://osf.io/uakq9/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/uakq9/downloadDirect OA link when available
- Concepts
-
Computer science, Functional magnetic resonance imaging, Annotation, Artificial intelligence, Event (particle physics), Cognition, Human–computer interaction, Psychology, Physics, Quantum mechanics, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388002190 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/uakq9 |
| ids.doi | https://doi.org/10.31234/osf.io/uakq9 |
| ids.openalex | https://openalex.org/W4388002190 |
| fwci | 0.61923925 |
| type | preprint |
| title | Gamer in the scanner : Event-related analysis of fMRI activity during retro videogame play guided by automated annotations of game content |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10731 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9017000198364258 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3204 |
| topics[0].subfield.display_name | Developmental and Educational Psychology |
| topics[0].display_name | Educational Games and Gamification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7271239757537842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779226451 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5686867237091064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[1].display_name | Functional magnetic resonance imaging |
| concepts[2].id | https://openalex.org/C2776321320 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5111525654792786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[2].display_name | Annotation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43752095103263855 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2779662365 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4274429380893707 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[4].display_name | Event (particle physics) |
| concepts[5].id | https://openalex.org/C169900460 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41547197103500366 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[5].display_name | Cognition |
| concepts[6].id | https://openalex.org/C107457646 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40517935156822205 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[6].display_name | Human–computer interaction |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15463167428970337 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7271239757537842 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[1].score | 0.5686867237091064 |
| keywords[1].display_name | Functional magnetic resonance imaging |
| keywords[2].id | https://openalex.org/keywords/annotation |
| keywords[2].score | 0.5111525654792786 |
| keywords[2].display_name | Annotation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.43752095103263855 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/event |
| keywords[4].score | 0.4274429380893707 |
| keywords[4].display_name | Event (particle physics) |
| keywords[5].id | https://openalex.org/keywords/cognition |
| keywords[5].score | 0.41547197103500366 |
| keywords[5].display_name | Cognition |
| keywords[6].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[6].score | 0.40517935156822205 |
| keywords[6].display_name | Human–computer interaction |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.15463167428970337 |
| keywords[7].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.31234/osf.io/uakq9 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/uakq9/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/uakq9 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063380287 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8970-1983 |
| authorships[0].author.display_name | Yann Harel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yann Harel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042419774 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4391-3075 |
| authorships[1].author.display_name | Basile Pinsard |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Basile Pinsard |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033136260 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Julie A. Boyle |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Julie A. Boyle |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004971531 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5651-9472 |
| authorships[3].author.display_name | André Cyr |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | André Cyr |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053865792 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9831-6657 |
| authorships[4].author.display_name | Maximilien Le Clei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Maximilien Le Clei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111063922 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Paul-Henri Mignot |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Paul-Henri Mignot |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5109243608 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Marie St‐Laurent |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Marie St-Laurent |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5051870567 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3790-9651 |
| authorships[7].author.display_name | Karim Jerbi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Karim Jerbi |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5009114084 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9111-0699 |
| authorships[8].author.display_name | Pierre Bellec |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Pierre Bellec |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/uakq9/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gamer in the scanner : Event-related analysis of fMRI activity during retro videogame play guided by automated annotations of game content |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10731 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9017000198364258 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3204 |
| primary_topic.subfield.display_name | Developmental and Educational Psychology |
| primary_topic.display_name | Educational Games and Gamification |
| related_works | https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W1533177136, https://openalex.org/W4380994516, https://openalex.org/W2556260348 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/uakq9 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/uakq9/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/uakq9 |
| primary_location.id | doi:10.31234/osf.io/uakq9 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/uakq9/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/uakq9 |
| publication_date | 2023-10-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6682129855, https://openalex.org/W2946119234, https://openalex.org/W2005753141, https://openalex.org/W2978106061, https://openalex.org/W2130010412, https://openalex.org/W3162455621, https://openalex.org/W2996037775, https://openalex.org/W2976933294, https://openalex.org/W6780559895, https://openalex.org/W763498075, https://openalex.org/W4210676343, https://openalex.org/W3008161459, https://openalex.org/W2580919770, https://openalex.org/W2903181768, https://openalex.org/W3112349766, https://openalex.org/W3000002674, https://openalex.org/W4293569210, https://openalex.org/W2904187348, https://openalex.org/W3021916801, https://openalex.org/W2951583631, https://openalex.org/W4386471771, https://openalex.org/W2167415089, https://openalex.org/W3017464978, https://openalex.org/W2128374759, https://openalex.org/W4296182691, https://openalex.org/W2172168442, https://openalex.org/W2963636937, https://openalex.org/W2048108671, https://openalex.org/W2604382266, https://openalex.org/W2099813784, https://openalex.org/W3092752701, https://openalex.org/W2170175684, https://openalex.org/W2102211617, https://openalex.org/W2020640689, https://openalex.org/W4291792637, https://openalex.org/W2468099629, https://openalex.org/W3105454787, https://openalex.org/W4372335106, https://openalex.org/W1989436652, https://openalex.org/W2046932951, https://openalex.org/W2283155334, https://openalex.org/W2809658419, https://openalex.org/W2096545952, https://openalex.org/W2072170505, https://openalex.org/W3049635842, https://openalex.org/W4302969537, https://openalex.org/W2916353457, https://openalex.org/W2103461294, https://openalex.org/W2913606428, https://openalex.org/W2181456249, https://openalex.org/W1984050705, https://openalex.org/W6756809042, https://openalex.org/W4284958274, https://openalex.org/W6669493523, https://openalex.org/W4387542198, https://openalex.org/W2970957161, https://openalex.org/W2586146499, https://openalex.org/W2061410227, https://openalex.org/W2053759320, https://openalex.org/W2955712969, https://openalex.org/W3022434101, https://openalex.org/W2128725052, https://openalex.org/W3165367699, https://openalex.org/W2901214657, https://openalex.org/W2982316857, https://openalex.org/W2598802110, https://openalex.org/W2032845561, https://openalex.org/W1990267352, https://openalex.org/W1992570774, https://openalex.org/W3157179432, https://openalex.org/W3195165979, https://openalex.org/W2151591509, https://openalex.org/W4394666657, https://openalex.org/W4297789758, https://openalex.org/W2071079766, https://openalex.org/W2903618123, https://openalex.org/W2076554698 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 80, 198, 219 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 101, 142 |
| abstract_inverted_index.an | 70, 125 |
| abstract_inverted_index.in | 7, 16, 157, 167, 215 |
| abstract_inverted_index.of | 42, 86, 109, 113, 153, 206 |
| abstract_inverted_index.on | 177 |
| abstract_inverted_index.or | 52, 127 |
| abstract_inverted_index.to | 13, 29, 49, 78, 147, 210 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.all | 188 |
| abstract_inverted_index.and | 18, 32, 65, 121, 160, 163, 169 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.how | 103 |
| abstract_inverted_index.its | 30 |
| abstract_inverted_index.may | 36 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.the | 40, 74, 87, 97, 107, 110, 154, 192, 204 |
| abstract_inverted_index.BOLD | 155 |
| abstract_inverted_index.Four | 130 |
| abstract_inverted_index.III: | 84 |
| abstract_inverted_index.Yet, | 21 |
| abstract_inverted_index.both | 62 |
| abstract_inverted_index.each | 158 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.game | 23, 55, 114, 145, 208, 221 |
| abstract_inverted_index.have | 4, 47 |
| abstract_inverted_index.maps | 181 |
| abstract_inverted_index.over | 197 |
| abstract_inverted_index.push | 26 |
| abstract_inverted_index.that | 57, 191 |
| abstract_inverted_index.this | 104, 201 |
| abstract_inverted_index.used | 143 |
| abstract_inverted_index.Given | 190 |
| abstract_inverted_index.Here, | 67 |
| abstract_inverted_index.Ninja | 88 |
| abstract_inverted_index.basis | 112 |
| abstract_inverted_index.being | 128 |
| abstract_inverted_index.brain | 185 |
| abstract_inverted_index.broad | 220 |
| abstract_inverted_index.depth | 41 |
| abstract_inverted_index.enemy | 126 |
| abstract_inverted_index.fully | 38 |
| abstract_inverted_index.hit). | 129 |
| abstract_inverted_index.offer | 58 |
| abstract_inverted_index.retro | 81 |
| abstract_inverted_index.study | 14, 108, 202, 211 |
| abstract_inverted_index.their | 11, 43 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.while | 134 |
| abstract_inverted_index.(MVPA) | 175 |
| abstract_inverted_index.(Sega, | 90 |
| abstract_inverted_index.1993), | 91 |
| abstract_inverted_index.Master | 89 |
| abstract_inverted_index.Python | 76 |
| abstract_inverted_index.Return | 85 |
| abstract_inverted_index.across | 187, 218 |
| abstract_inverted_index.common | 162 |
| abstract_inverted_index.derive | 148 |
| abstract_inverted_index.events | 123 |
| abstract_inverted_index.game's | 98 |
| abstract_inverted_index.games, | 200 |
| abstract_inverted_index.highly | 183 |
| abstract_inverted_index.linear | 151 |
| abstract_inverted_index.manual | 50 |
| abstract_inverted_index.memory | 99 |
| abstract_inverted_index.method | 105 |
| abstract_inverted_index.models | 152 |
| abstract_inverted_index.neural | 111 |
| abstract_inverted_index.played | 132 |
| abstract_inverted_index.player | 117 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.showed | 161 |
| abstract_inverted_index.signal | 156 |
| abstract_inverted_index.visual | 168 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.(fMRI). | 141 |
| abstract_inverted_index.Shinobi | 83, 133 |
| abstract_inverted_index.actions | 118 |
| abstract_inverted_index.capture | 39 |
| abstract_inverted_index.complex | 212 |
| abstract_inverted_index.current | 33 |
| abstract_inverted_index.dynamic | 216 |
| abstract_inverted_index.emulate | 79 |
| abstract_inverted_index.enables | 93 |
| abstract_inverted_index.events, | 115 |
| abstract_inverted_index.general | 150 |
| abstract_inverted_index.greater | 59 |
| abstract_inverted_index.imaging | 140 |
| abstract_inverted_index.library | 77 |
| abstract_inverted_index.limits, | 31 |
| abstract_inverted_index.pattern | 173 |
| abstract_inverted_index.states. | 100 |
| abstract_inverted_index.studies | 46 |
| abstract_inverted_index.(killing | 124 |
| abstract_inverted_index.accurate | 184 |
| abstract_inverted_index.achieved | 182 |
| abstract_inverted_index.analysis | 174 |
| abstract_inverted_index.approach | 72 |
| abstract_inverted_index.content. | 44 |
| abstract_inverted_index.control, | 61 |
| abstract_inverted_index.decoding | 186 |
| abstract_inverted_index.employed | 53 |
| abstract_inverted_index.feedback | 122 |
| abstract_inverted_index.gathered | 5 |
| abstract_inverted_index.hitting) | 120 |
| abstract_inverted_index.inherent | 22 |
| abstract_inverted_index.interest | 6 |
| abstract_inverted_index.limiting | 64 |
| abstract_inverted_index.magnetic | 137, 139 |
| abstract_inverted_index.modeling | 28 |
| abstract_inverted_index.modified | 54 |
| abstract_inverted_index.patterns | 166 |
| abstract_inverted_index.platform | 195 |
| abstract_inverted_index.resorted | 48 |
| abstract_inverted_index.settings | 217 |
| abstract_inverted_index.subject, | 159 |
| abstract_inverted_index.supports | 196 |
| abstract_inverted_index.thousand | 199 |
| abstract_inverted_index.versions | 56 |
| abstract_inverted_index.(jumping, | 119 |
| abstract_inverted_index.automated | 94, 144, 207 |
| abstract_inverted_index.cognition | 15 |
| abstract_inverted_index.cognitive | 8, 213 |
| abstract_inverted_index.conducted | 176 |
| abstract_inverted_index.contexts. | 20 |
| abstract_inverted_index.cortices. | 171 |
| abstract_inverted_index.dynamical | 17 |
| abstract_inverted_index.emulation | 194 |
| abstract_inverted_index.gym-retro | 75, 193 |
| abstract_inverted_index.including | 116 |
| abstract_inverted_index.introduce | 69 |
| abstract_inverted_index.potential | 12, 205 |
| abstract_inverted_index.processes | 214 |
| abstract_inverted_index.resonance | 138 |
| abstract_inverted_index.spectrum. | 222 |
| abstract_inverted_index.activation | 165, 180 |
| abstract_inverted_index.annotation | 34, 146 |
| abstract_inverted_index.approaches | 63 |
| abstract_inverted_index.complexity | 24 |
| abstract_inverted_index.functional | 136 |
| abstract_inverted_index.innovative | 71 |
| abstract_inverted_index.undergoing | 135 |
| abstract_inverted_index.videogames | 3 |
| abstract_inverted_index.Multi-voxel | 172 |
| abstract_inverted_index.annotations | 51, 95, 209 |
| abstract_inverted_index.demonstrate | 102 |
| abstract_inverted_index.event-based | 149 |
| abstract_inverted_index.facilitates | 106 |
| abstract_inverted_index.individuals | 131 |
| abstract_inverted_index.traditional | 27 |
| abstract_inverted_index.underscores | 203 |
| abstract_inverted_index.Neuroimaging | 45 |
| abstract_inverted_index.annotations. | 189 |
| abstract_inverted_index.experimental | 60 |
| abstract_inverted_index.naturalistic | 19 |
| abstract_inverted_index.neuroscience | 9 |
| abstract_inverted_index.methodologies | 35 |
| abstract_inverted_index.sensori-motor | 170 |
| abstract_inverted_index.session-level | 178 |
| abstract_inverted_index.labor-intensive. | 66 |
| abstract_inverted_index.subject-specific | 164 |
| abstract_inverted_index.action-platformer, | 82 |
| abstract_inverted_index.annotation-derived | 179 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.67937628 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |