GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3847/1538-4357/ac7f9e
We introduce a novel machine-learning framework for estimating the Bayesian posteriors of morphological parameters for arbitrarily large numbers of galaxies. The Galaxy Morphology Posterior Estimation Network (GaMPEN) estimates values and uncertainties for a galaxy’s bulge-to-total-light ratio ( L B / L T ), effective radius ( R e ), and flux ( F ). To estimate posteriors, GaMPEN uses the Monte Carlo Dropout technique and incorporates the full covariance matrix between the output parameters in its loss function. GaMPEN also uses a spatial transformer network (STN) to automatically crop input galaxy frames to an optimal size before determining their morphology. This will allow it to be applied to new data without prior knowledge of galaxy size. Training and testing GaMPEN on galaxies simulated to match z < 0.25 galaxies in Hyper Suprime-Cam Wide g -band images, we demonstrate that GaMPEN achieves typical errors of 0.1 in L B / L T , 0.″17 (∼7%) in R e , and 6.3 × 10 4 nJy (∼1%) in F . GaMPEN's predicted uncertainties are well calibrated and accurate (<5% deviation)—for regions of the parameter space with high residuals, GaMPEN correctly predicts correspondingly large uncertainties. We also demonstrate that we can apply categorical labels (i.e., classifications such as highly bulge dominated ) to predictions in regions with high residuals and verify that those labels are ≳97% accurate. To the best of our knowledge, GaMPEN is the first machine-learning framework for determining joint posterior distributions of multiple morphological parameters and is also the first application of an STN to optical imaging in astronomy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3847/1538-4357/ac7f9e
- https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdf
- OA Status
- gold
- Cited By
- 11
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293239474
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293239474Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3847/1538-4357/ac7f9eDigital Object Identifier
- Title
-
GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological ParametersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-01Full publication date if available
- Authors
-
Aritra Ghosh, C. M. Urry, Amrit Rau, Laurence Perreault-Levasseur, Miles Cranmer, Kevin Schawinski, Dominic Stark, Chuan Tian, Ryan Ofman, Tonima Tasnim Ananna, Connor Auge, N. Cappelluti, D. B. Sanders, Ezequiel TreisterList of authors in order
- Landing page
-
https://doi.org/10.3847/1538-4357/ac7f9ePublisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdfDirect OA link when available
- Concepts
-
Physics, Galaxy, Astrophysics, Algorithm, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293239474 |
|---|---|
| doi | https://doi.org/10.3847/1538-4357/ac7f9e |
| ids.doi | https://doi.org/10.3847/1538-4357/ac7f9e |
| ids.openalex | https://openalex.org/W4293239474 |
| fwci | 1.36170981 |
| type | article |
| title | GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters |
| awards[0].id | https://openalex.org/G2706914731 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1715512 |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G1638327757 |
| awards[1].funder_id | https://openalex.org/F4320306101 |
| awards[1].display_name | |
| awards[1].funder_award_id | 80NSSC18K0418 |
| awards[1].funder_display_name | National Aeronautics and Space Administration |
| biblio.issue | 2 |
| biblio.volume | 935 |
| biblio.last_page | 138 |
| biblio.first_page | 138 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9900000095367432 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T10026 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Galaxies: Formation, Evolution, Phenomena |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320306101 |
| funders[1].ror | https://ror.org/027ka1x80 |
| funders[1].display_name | National Aeronautics and Space Administration |
| is_xpac | False |
| apc_list.value | 4499 |
| apc_list.currency | USD |
| apc_list.value_usd | 4499 |
| apc_paid.value | 4499 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4499 |
| concepts[0].id | https://openalex.org/C121332964 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8590407371520996 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[0].display_name | Physics |
| concepts[1].id | https://openalex.org/C98444146 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7838894128799438 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[1].display_name | Galaxy |
| concepts[2].id | https://openalex.org/C44870925 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6009396314620972 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[2].display_name | Astrophysics |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4063902497291565 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1620478332042694 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/physics |
| keywords[0].score | 0.8590407371520996 |
| keywords[0].display_name | Physics |
| keywords[1].id | https://openalex.org/keywords/galaxy |
| keywords[1].score | 0.7838894128799438 |
| keywords[1].display_name | Galaxy |
| keywords[2].id | https://openalex.org/keywords/astrophysics |
| keywords[2].score | 0.6009396314620972 |
| keywords[2].display_name | Astrophysics |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.4063902497291565 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.1620478332042694 |
| keywords[4].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.3847/1538-4357/ac7f9e |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1980519 |
| locations[0].source.issn | 0004-637X, 1538-4357 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0004-637X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Astrophysical Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Astrophysical Journal |
| locations[0].landing_page_url | https://doi.org/10.3847/1538-4357/ac7f9e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085029964 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2525-9647 |
| authorships[0].author.display_name | Aritra Ghosh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Astronomy, Yale University, New Haven, CT, USA; Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aritra ঘোষ Ghosh অরিত্র |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Astronomy, Yale University, New Haven, CT, USA; Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[1].author.id | https://openalex.org/A5070191530 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0745-9792 |
| authorships[1].author.display_name | C. M. Urry |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Physics, Yale University, New Haven, CT, USA |
| authorships[1].affiliations[1].raw_affiliation_string | Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | C. Megan Urry |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physics, Yale University, New Haven, CT, USA, Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[2].author.id | https://openalex.org/A5025632013 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Amrit Rau |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Yale University, New Haven, CT, USA |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amrit Rau |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Yale University, New Haven, CT, USA |
| authorships[3].author.id | https://openalex.org/A5059602798 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3544-3939 |
| authorships[3].author.display_name | Laurence Perreault-Levasseur |
| authorships[3].countries | CA, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Physics, Univesité de Montréal, Montréal, Canada |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210164802 |
| authorships[3].affiliations[1].raw_affiliation_string | Mila—Quebec Artificial Intelligence Institute, Montréal, Canada |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[3].affiliations[2].raw_affiliation_string | Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[3].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Flatiron Institute |
| authorships[3].institutions[1].id | https://openalex.org/I4210164802 |
| authorships[3].institutions[1].ror | https://ror.org/05c22rx21 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210164802 |
| authorships[3].institutions[1].country_code | CA |
| authorships[3].institutions[1].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[3].institutions[2].id | https://openalex.org/I70931966 |
| authorships[3].institutions[2].ror | https://ror.org/0161xgx34 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I70931966 |
| authorships[3].institutions[2].country_code | CA |
| authorships[3].institutions[2].display_name | Université de Montréal |
| authorships[3].institutions[3].id | https://openalex.org/I4210153546 |
| authorships[3].institutions[3].ror | https://ror.org/0508h6p74 |
| authorships[3].institutions[3].type | company |
| authorships[3].institutions[3].lineage | https://openalex.org/I4210153546 |
| authorships[3].institutions[3].country_code | US |
| authorships[3].institutions[3].display_name | Flatiron Health (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Laurence Perreault-Levasseur |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA, Department of Physics, Univesité de Montréal, Montréal, Canada, Mila—Quebec Artificial Intelligence Institute, Montréal, Canada |
| authorships[4].author.id | https://openalex.org/A5078731429 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6458-3423 |
| authorships[4].author.display_name | Miles Cranmer |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I20089843 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA |
| authorships[4].institutions[0].id | https://openalex.org/I20089843 |
| authorships[4].institutions[0].ror | https://ror.org/00hx57361 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I20089843 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Princeton University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Miles Cranmer |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA |
| authorships[5].author.id | https://openalex.org/A5070944637 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5464-0888 |
| authorships[5].author.display_name | Kevin Schawinski |
| authorships[5].affiliations[0].raw_affiliation_string | Modulos AG, Technoparkstr. 1, CH-8005, Zurich, Switzerland |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kevin Schawinski |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Modulos AG, Technoparkstr. 1, CH-8005, Zurich, Switzerland |
| authorships[6].author.id | https://openalex.org/A5057646332 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Dominic Stark |
| authorships[6].affiliations[0].raw_affiliation_string | Modulos AG, Technoparkstr. 1, CH-8005, Zurich, Switzerland |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dominic Stark |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Modulos AG, Technoparkstr. 1, CH-8005, Zurich, Switzerland |
| authorships[7].author.id | https://openalex.org/A5051034278 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4056-7071 |
| authorships[7].author.display_name | Chuan Tian |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Physics, Yale University, New Haven, CT, USA; Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[7].institutions[0].id | https://openalex.org/I32971472 |
| authorships[7].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Yale University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chuan 川 Tian 田 |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Physics, Yale University, New Haven, CT, USA; Yale Center for Astronomy and Astrophysics, New Haven, CT, USA |
| authorships[8].author.id | https://openalex.org/A5022252482 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Ryan Ofman |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Astronomy, Yale University, New Haven, CT, USA |
| authorships[8].institutions[0].id | https://openalex.org/I32971472 |
| authorships[8].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Yale University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ryan Ofman |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Astronomy, Yale University, New Haven, CT, USA |
| authorships[9].author.id | https://openalex.org/A5079038271 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8211-3807 |
| authorships[9].author.display_name | Tonima Tasnim Ananna |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I107672454 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH, USA |
| authorships[9].institutions[0].id | https://openalex.org/I107672454 |
| authorships[9].institutions[0].ror | https://ror.org/049s0rh22 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I107672454 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Dartmouth College |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Tonima Tasnim Ananna |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH, USA |
| authorships[10].author.id | https://openalex.org/A5062204887 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5504-8752 |
| authorships[10].author.display_name | Connor Auge |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Physics, University of Miami, Coral Gables, FL, USA |
| authorships[10].institutions[0].id | https://openalex.org/I145608581 |
| authorships[10].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | University of Miami |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Connor Auge |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Physics, University of Miami, Coral Gables, FL, USA |
| authorships[11].author.id | https://openalex.org/A5057641622 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1697-186X |
| authorships[11].author.display_name | N. Cappelluti |
| authorships[11].countries | IT, US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I4210087155, https://openalex.org/I4387152681 |
| authorships[11].affiliations[0].raw_affiliation_string | INAF—Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I1331384533 |
| authorships[11].affiliations[1].raw_affiliation_string | Institute for Astronomy, University of Hawaií, Honolulu, HI, USA |
| authorships[11].institutions[0].id | https://openalex.org/I4387152681 |
| authorships[11].institutions[0].ror | https://ror.org/00gqsp710 |
| authorships[11].institutions[0].type | facility |
| authorships[11].institutions[0].lineage | https://openalex.org/I4387152681, https://openalex.org/I875825670 |
| authorships[11].institutions[0].country_code | |
| authorships[11].institutions[0].display_name | Osservatorio di Astrofisica e Scienza dello Spazio |
| authorships[11].institutions[1].id | https://openalex.org/I4210087155 |
| authorships[11].institutions[1].ror | https://ror.org/000sy1f36 |
| authorships[11].institutions[1].type | nonprofit |
| authorships[11].institutions[1].lineage | https://openalex.org/I4210087155, https://openalex.org/I875825670 |
| authorships[11].institutions[1].country_code | IT |
| authorships[11].institutions[1].display_name | Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna |
| authorships[11].institutions[2].id | https://openalex.org/I1331384533 |
| authorships[11].institutions[2].ror | https://ror.org/03tzaeb71 |
| authorships[11].institutions[2].type | education |
| authorships[11].institutions[2].lineage | https://openalex.org/I1331384533 |
| authorships[11].institutions[2].country_code | US |
| authorships[11].institutions[2].display_name | University of Hawaii System |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Nico Cappelluti |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | INAF—Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy, Institute for Astronomy, University of Hawaií, Honolulu, HI, USA |
| authorships[12].author.id | https://openalex.org/A5011211151 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-1233-9998 |
| authorships[12].author.display_name | D. B. Sanders |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Physics, University of Miami, Coral Gables, FL, USA |
| authorships[12].institutions[0].id | https://openalex.org/I145608581 |
| authorships[12].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | University of Miami |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | David B. Sanders |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Physics, University of Miami, Coral Gables, FL, USA |
| authorships[13].author.id | https://openalex.org/A5006269247 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-7568-6412 |
| authorships[13].author.display_name | Ezequiel Treister |
| authorships[13].countries | CL |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I162148367 |
| authorships[13].affiliations[0].raw_affiliation_string | Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago, Chile |
| authorships[13].institutions[0].id | https://openalex.org/I162148367 |
| authorships[13].institutions[0].ror | https://ror.org/04teye511 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I162148367 |
| authorships[13].institutions[0].country_code | CL |
| authorships[13].institutions[0].display_name | Pontificia Universidad Católica de Chile |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Ezequiel Treister |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago, Chile |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-08-27T00:00:00 |
| display_name | GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9900000095367432 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W4321479465, https://openalex.org/W4394637313, https://openalex.org/W1968347830, https://openalex.org/W2790283293 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3847/1538-4357/ac7f9e |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1980519 |
| best_oa_location.source.issn | 0004-637X, 1538-4357 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0004-637X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Astrophysical Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Astrophysical Journal |
| best_oa_location.landing_page_url | https://doi.org/10.3847/1538-4357/ac7f9e |
| primary_location.id | doi:10.3847/1538-4357/ac7f9e |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1980519 |
| primary_location.source.issn | 0004-637X, 1538-4357 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0004-637X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Astrophysical Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9e/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Astrophysical Journal |
| primary_location.landing_page_url | https://doi.org/10.3847/1538-4357/ac7f9e |
| publication_date | 2022-08-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4230617792, https://openalex.org/W3005350546, https://openalex.org/W2066645046, https://openalex.org/W2075026317, https://openalex.org/W3184112418, https://openalex.org/W4247590281, https://openalex.org/W3204640165, https://openalex.org/W2044738244, https://openalex.org/W4223490268, https://openalex.org/W2413988422, https://openalex.org/W2101926813, https://openalex.org/W3033060214, https://openalex.org/W2155705849, https://openalex.org/W3035965352, https://openalex.org/W2953419262, https://openalex.org/W2025183738, https://openalex.org/W2963076183, https://openalex.org/W4247359480, https://openalex.org/W2435145849, https://openalex.org/W2198074945, https://openalex.org/W2011301426, https://openalex.org/W2159714423, https://openalex.org/W1516111018, https://openalex.org/W2515239931, https://openalex.org/W2109690032, https://openalex.org/W2919115771, https://openalex.org/W2112796928, https://openalex.org/W2112193291, https://openalex.org/W2042081811, https://openalex.org/W2997591727, https://openalex.org/W2079227246, https://openalex.org/W2751448052, https://openalex.org/W4288079944, https://openalex.org/W2573067179, https://openalex.org/W4293238452, https://openalex.org/W2797439311, https://openalex.org/W2497776510, https://openalex.org/W2066202006, https://openalex.org/W2135625048, https://openalex.org/W2024305559, https://openalex.org/W1498436455, https://openalex.org/W2153048564, https://openalex.org/W2076063813, https://openalex.org/W2772138577, https://openalex.org/W2987499710, https://openalex.org/W3199210740, https://openalex.org/W2039414721, https://openalex.org/W2530273440, https://openalex.org/W3214756864, https://openalex.org/W4210417861, https://openalex.org/W2169224160, https://openalex.org/W2767770039, https://openalex.org/W2078765460, https://openalex.org/W3113275039, https://openalex.org/W3094861605, https://openalex.org/W3203256536, https://openalex.org/W2946593308, https://openalex.org/W2805040647, https://openalex.org/W2048414711, https://openalex.org/W2157917411, https://openalex.org/W3039233188, https://openalex.org/W3105353888, https://openalex.org/W3104314836, https://openalex.org/W3099878876, https://openalex.org/W3104062568, https://openalex.org/W3098166093, https://openalex.org/W3100582919, https://openalex.org/W3098725059, https://openalex.org/W3098603390, https://openalex.org/W3100901804, https://openalex.org/W3101804985 |
| referenced_works_count | 71 |
| abstract_inverted_index.( | 37, 46, 52 |
| abstract_inverted_index.) | 209 |
| abstract_inverted_index., | 152, 158 |
| abstract_inverted_index.. | 168 |
| abstract_inverted_index./ | 40, 149 |
| abstract_inverted_index.4 | 163 |
| abstract_inverted_index.B | 39, 148 |
| abstract_inverted_index.F | 53, 167 |
| abstract_inverted_index.L | 38, 41, 147, 150 |
| abstract_inverted_index.R | 47, 156 |
| abstract_inverted_index.T | 42, 151 |
| abstract_inverted_index.a | 3, 33, 82 |
| abstract_inverted_index.e | 48, 157 |
| abstract_inverted_index.g | 134 |
| abstract_inverted_index.z | 126 |
| abstract_inverted_index.), | 43, 49 |
| abstract_inverted_index.). | 54 |
| abstract_inverted_index.10 | 162 |
| abstract_inverted_index.To | 55, 225 |
| abstract_inverted_index.We | 1, 193 |
| abstract_inverted_index.an | 94, 253 |
| abstract_inverted_index.as | 205 |
| abstract_inverted_index.be | 106 |
| abstract_inverted_index.in | 75, 130, 146, 155, 166, 212, 258 |
| abstract_inverted_index.is | 232, 247 |
| abstract_inverted_index.it | 104 |
| abstract_inverted_index.of | 12, 19, 114, 144, 180, 228, 242, 252 |
| abstract_inverted_index.on | 121 |
| abstract_inverted_index.to | 87, 93, 105, 108, 124, 210, 255 |
| abstract_inverted_index.we | 137, 197 |
| abstract_inverted_index.× | 161 |
| abstract_inverted_index.0.1 | 145 |
| abstract_inverted_index.6.3 | 160 |
| abstract_inverted_index.STN | 254 |
| abstract_inverted_index.The | 21 |
| abstract_inverted_index.and | 30, 50, 65, 118, 159, 175, 217, 246 |
| abstract_inverted_index.are | 172, 222 |
| abstract_inverted_index.can | 198 |
| abstract_inverted_index.for | 7, 15, 32, 237 |
| abstract_inverted_index.its | 76 |
| abstract_inverted_index.nJy | 164 |
| abstract_inverted_index.new | 109 |
| abstract_inverted_index.our | 229 |
| abstract_inverted_index.the | 9, 60, 67, 72, 181, 226, 233, 249 |
| abstract_inverted_index.< | 127 |
| abstract_inverted_index.0.25 | 128 |
| abstract_inverted_index.This | 101 |
| abstract_inverted_index.Wide | 133 |
| abstract_inverted_index.also | 80, 194, 248 |
| abstract_inverted_index.best | 227 |
| abstract_inverted_index.crop | 89 |
| abstract_inverted_index.data | 110 |
| abstract_inverted_index.flux | 51 |
| abstract_inverted_index.full | 68 |
| abstract_inverted_index.high | 185, 215 |
| abstract_inverted_index.loss | 77 |
| abstract_inverted_index.size | 96 |
| abstract_inverted_index.such | 204 |
| abstract_inverted_index.that | 139, 196, 219 |
| abstract_inverted_index.uses | 59, 81 |
| abstract_inverted_index.well | 173 |
| abstract_inverted_index.will | 102 |
| abstract_inverted_index.with | 184, 214 |
| abstract_inverted_index.(STN) | 86 |
| abstract_inverted_index.-band | 135 |
| abstract_inverted_index.Carlo | 62 |
| abstract_inverted_index.Hyper | 131 |
| abstract_inverted_index.Monte | 61 |
| abstract_inverted_index.allow | 103 |
| abstract_inverted_index.apply | 199 |
| abstract_inverted_index.bulge | 207 |
| abstract_inverted_index.first | 234, 250 |
| abstract_inverted_index.input | 90 |
| abstract_inverted_index.joint | 239 |
| abstract_inverted_index.large | 17, 191 |
| abstract_inverted_index.match | 125 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.prior | 112 |
| abstract_inverted_index.ratio | 36 |
| abstract_inverted_index.size. | 116 |
| abstract_inverted_index.space | 183 |
| abstract_inverted_index.their | 99 |
| abstract_inverted_index.those | 220 |
| abstract_inverted_index.(i.e., | 202 |
| abstract_inverted_index.GaMPEN | 58, 79, 120, 140, 187, 231 |
| abstract_inverted_index.Galaxy | 22 |
| abstract_inverted_index.before | 97 |
| abstract_inverted_index.errors | 143 |
| abstract_inverted_index.frames | 92 |
| abstract_inverted_index.galaxy | 91, 115 |
| abstract_inverted_index.highly | 206 |
| abstract_inverted_index.labels | 201, 221 |
| abstract_inverted_index.matrix | 70 |
| abstract_inverted_index.output | 73 |
| abstract_inverted_index.radius | 45 |
| abstract_inverted_index.values | 29 |
| abstract_inverted_index.verify | 218 |
| abstract_inverted_index.≳97% | 223 |
| abstract_inverted_index.(<5% | 177 |
| abstract_inverted_index.(∼1%) | 165 |
| abstract_inverted_index.(∼7%) | 154 |
| abstract_inverted_index.0.″17 | 153 |
| abstract_inverted_index.Dropout | 63 |
| abstract_inverted_index.Network | 26 |
| abstract_inverted_index.applied | 107 |
| abstract_inverted_index.between | 71 |
| abstract_inverted_index.images, | 136 |
| abstract_inverted_index.imaging | 257 |
| abstract_inverted_index.network | 85 |
| abstract_inverted_index.numbers | 18 |
| abstract_inverted_index.optical | 256 |
| abstract_inverted_index.optimal | 95 |
| abstract_inverted_index.regions | 179, 213 |
| abstract_inverted_index.spatial | 83 |
| abstract_inverted_index.testing | 119 |
| abstract_inverted_index.typical | 142 |
| abstract_inverted_index.without | 111 |
| abstract_inverted_index.(GaMPEN) | 27 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 10 |
| abstract_inverted_index.GaMPEN's | 169 |
| abstract_inverted_index.Training | 117 |
| abstract_inverted_index.accurate | 176 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.estimate | 56 |
| abstract_inverted_index.galaxies | 122, 129 |
| abstract_inverted_index.multiple | 243 |
| abstract_inverted_index.predicts | 189 |
| abstract_inverted_index.Posterior | 24 |
| abstract_inverted_index.accurate. | 224 |
| abstract_inverted_index.correctly | 188 |
| abstract_inverted_index.dominated | 208 |
| abstract_inverted_index.effective | 44 |
| abstract_inverted_index.estimates | 28 |
| abstract_inverted_index.framework | 6, 236 |
| abstract_inverted_index.function. | 78 |
| abstract_inverted_index.galaxies. | 20 |
| abstract_inverted_index.introduce | 2 |
| abstract_inverted_index.knowledge | 113 |
| abstract_inverted_index.parameter | 182 |
| abstract_inverted_index.posterior | 240 |
| abstract_inverted_index.predicted | 170 |
| abstract_inverted_index.residuals | 216 |
| abstract_inverted_index.simulated | 123 |
| abstract_inverted_index.technique | 64 |
| abstract_inverted_index.Estimation | 25 |
| abstract_inverted_index.Morphology | 23 |
| abstract_inverted_index.astronomy. | 259 |
| abstract_inverted_index.calibrated | 174 |
| abstract_inverted_index.covariance | 69 |
| abstract_inverted_index.estimating | 8 |
| abstract_inverted_index.galaxy’s | 34 |
| abstract_inverted_index.knowledge, | 230 |
| abstract_inverted_index.parameters | 14, 74, 245 |
| abstract_inverted_index.posteriors | 11 |
| abstract_inverted_index.residuals, | 186 |
| abstract_inverted_index.Suprime-Cam | 132 |
| abstract_inverted_index.application | 251 |
| abstract_inverted_index.arbitrarily | 16 |
| abstract_inverted_index.categorical | 200 |
| abstract_inverted_index.demonstrate | 138, 195 |
| abstract_inverted_index.determining | 98, 238 |
| abstract_inverted_index.morphology. | 100 |
| abstract_inverted_index.posteriors, | 57 |
| abstract_inverted_index.predictions | 211 |
| abstract_inverted_index.transformer | 84 |
| abstract_inverted_index.incorporates | 66 |
| abstract_inverted_index.automatically | 88 |
| abstract_inverted_index.distributions | 241 |
| abstract_inverted_index.morphological | 13, 244 |
| abstract_inverted_index.uncertainties | 31, 171 |
| abstract_inverted_index.uncertainties. | 192 |
| abstract_inverted_index.classifications | 203 |
| abstract_inverted_index.correspondingly | 190 |
| abstract_inverted_index.deviation)—for | 178 |
| abstract_inverted_index.machine-learning | 5, 235 |
| abstract_inverted_index.bulge-to-total-light | 35 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile.value | 0.80390029 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |