Gastrointestinal bleeding detection on digital subtraction angiography using convolutional neural networks with and without temporal information Article Swipe
Derek Smetanick
,
Sailendra Naidu
,
Alex Wallace
,
M. Grace Knuttinen
,
Indravadan Patel
,
Sadeer Alzubaidi
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4274/dir.2025.253134
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4274/dir.2025.253134
Automated detection of GI bleeding in DSA may reduce time to embolization, thereby improving patient outcomes.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4274/dir.2025.253134
- https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdf
- OA Status
- diamond
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413040147
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413040147Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4274/dir.2025.253134Digital Object Identifier
- Title
-
Gastrointestinal bleeding detection on digital subtraction angiography using convolutional neural networks with and without temporal informationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-07Full publication date if available
- Authors
-
Derek Smetanick, Sailendra Naidu, Alex Wallace, M. Grace Knuttinen, Indravadan Patel, Sadeer AlzubaidiList of authors in order
- Landing page
-
https://doi.org/10.4274/dir.2025.253134Publisher landing page
- PDF URL
-
https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdfDirect OA link when available
- Concepts
-
Medicine, Digital subtraction angiography, Fluoroscopy, Artificial intelligence, Convolutional neural network, Radiology, Segmentation, Angiography, Computer vision, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413040147 |
|---|---|
| doi | https://doi.org/10.4274/dir.2025.253134 |
| ids.doi | https://doi.org/10.4274/dir.2025.253134 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40785107 |
| ids.openalex | https://openalex.org/W4413040147 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D015901 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Angiography, Digital Subtraction |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D006471 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Gastrointestinal Hemorrhage |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D004621 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Embolization, Therapeutic |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D021621 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Imaging, Three-Dimensional |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008297 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Male |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000098415 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Convolutional Neural Networks |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D015901 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Angiography, Digital Subtraction |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000098415 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Convolutional Neural Networks |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D004621 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Embolization, Therapeutic |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D006471 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Gastrointestinal Hemorrhage |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D021621 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Imaging, Three-Dimensional |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D015901 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Angiography, Digital Subtraction |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000098415 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Convolutional Neural Networks |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D004621 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Embolization, Therapeutic |
| mesh[21].qualifier_ui | Q000000981 |
| mesh[21].descriptor_ui | D006471 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | diagnostic imaging |
| mesh[21].descriptor_name | Gastrointestinal Hemorrhage |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D021621 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Imaging, Three-Dimensional |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000069550 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Machine Learning |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D016571 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Neural Networks, Computer |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D015901 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Angiography, Digital Subtraction |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000098415 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Convolutional Neural Networks |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D004621 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Embolization, Therapeutic |
| mesh[29].qualifier_ui | Q000000981 |
| mesh[29].descriptor_ui | D006471 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | diagnostic imaging |
| mesh[29].descriptor_name | Gastrointestinal Hemorrhage |
| mesh[30].qualifier_ui | Q000379 |
| mesh[30].descriptor_ui | D021621 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | methods |
| mesh[30].descriptor_name | Imaging, Three-Dimensional |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D000069550 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Machine Learning |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D016571 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Gastrointestinal bleeding detection on digital subtraction angiography using convolutional neural networks with and without temporal information |
| biblio.issue | 5 |
| biblio.volume | 31 |
| biblio.last_page | 473 |
| biblio.first_page | 465 |
| topics[0].id | https://openalex.org/T11378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2715 |
| topics[0].subfield.display_name | Gastroenterology |
| topics[0].display_name | Gastrointestinal Bleeding Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10552 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9814000129699707 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Screening and Detection |
| topics[2].id | https://openalex.org/T11658 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9663000106811523 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Esophageal and GI Pathology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8487129211425781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2778286760 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7629570960998535 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1224954 |
| concepts[1].display_name | Digital subtraction angiography |
| concepts[2].id | https://openalex.org/C2776805002 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6362372636795044 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q614984 |
| concepts[2].display_name | Fluoroscopy |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6320353150367737 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5507947206497192 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C126838900 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5438717603683472 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[5].display_name | Radiology |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5285792946815491 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C2780643987 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4613409638404846 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q468414 |
| concepts[7].display_name | Angiography |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4388631582260132 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32843437790870667 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8487129211425781 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/digital-subtraction-angiography |
| keywords[1].score | 0.7629570960998535 |
| keywords[1].display_name | Digital subtraction angiography |
| keywords[2].id | https://openalex.org/keywords/fluoroscopy |
| keywords[2].score | 0.6362372636795044 |
| keywords[2].display_name | Fluoroscopy |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6320353150367737 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5507947206497192 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/radiology |
| keywords[5].score | 0.5438717603683472 |
| keywords[5].display_name | Radiology |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5285792946815491 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/angiography |
| keywords[7].score | 0.4613409638404846 |
| keywords[7].display_name | Angiography |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4388631582260132 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.32843437790870667 |
| keywords[9].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.4274/dir.2025.253134 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210189829 |
| locations[0].source.issn | 1305-3612, 1305-3825 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1305-3612 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostic and Interventional Radiology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostic and Interventional Radiology |
| locations[0].landing_page_url | https://doi.org/10.4274/dir.2025.253134 |
| locations[1].id | pmid:40785107 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostic and interventional radiology (Ankara, Turkey) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40785107 |
| locations[2].id | pmh:oai:doaj.org/article:f21e5b2144bf464eba7d8ec5c2ba2360 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostic and Interventional Radiology, Vol 31, Iss 5, Pp 465-473 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/f21e5b2144bf464eba7d8ec5c2ba2360 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5093973739 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Derek Smetanick |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I138006243 |
| authorships[0].affiliations[0].raw_affiliation_string | The University of Arizona College of Medicine, Department of Interventional Radiology, Tucson, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I138006243 |
| authorships[0].institutions[0].ror | https://ror.org/03m2x1q45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I138006243 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Arizona |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Derek Smetanick |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The University of Arizona College of Medicine, Department of Interventional Radiology, Tucson, USA. |
| authorships[1].author.id | https://openalex.org/A5014443337 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8233-8464 |
| authorships[1].author.display_name | Sailendra Naidu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[1].affiliations[0].raw_affiliation_string | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[1].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[1].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[1].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | WinnMed |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sailendra Naidu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[2].author.id | https://openalex.org/A5102506776 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5383-1375 |
| authorships[2].author.display_name | Alex Wallace |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[2].affiliations[0].raw_affiliation_string | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[2].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[2].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[2].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | WinnMed |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alex Wallace |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[3].author.id | https://openalex.org/A5041091522 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5772-119X |
| authorships[3].author.display_name | M. Grace Knuttinen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[3].affiliations[0].raw_affiliation_string | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[3].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[3].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[3].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[3].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | WinnMed |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | M-Grace Knuttinen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[4].author.id | https://openalex.org/A5003984873 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6138-0850 |
| authorships[4].author.display_name | Indravadan Patel |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[4].affiliations[0].raw_affiliation_string | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[4].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[4].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[4].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[4].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | WinnMed |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Indravadan Patel |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[5].author.id | https://openalex.org/A5083908176 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7955-170X |
| authorships[5].author.display_name | Sadeer Alzubaidi |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[5].affiliations[0].raw_affiliation_string | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| authorships[5].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[5].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[5].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[5].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[5].institutions[1].type | nonprofit |
| authorships[5].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | WinnMed |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sadeer Alzubaidi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Mayo Clinic College of Medicine and Science, Department of Radiology, Phoenix, USA. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gastrointestinal bleeding detection on digital subtraction angiography using convolutional neural networks with and without temporal information |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2715 |
| primary_topic.subfield.display_name | Gastroenterology |
| primary_topic.display_name | Gastrointestinal Bleeding Diagnosis and Treatment |
| related_works | https://openalex.org/W2124245542, https://openalex.org/W2410792662, https://openalex.org/W2331987950, https://openalex.org/W2007853748, https://openalex.org/W2170087772, https://openalex.org/W2082302807, https://openalex.org/W2884270309, https://openalex.org/W2381035926, https://openalex.org/W2151112203, https://openalex.org/W2430937403 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.4274/dir.2025.253134 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210189829 |
| best_oa_location.source.issn | 1305-3612, 1305-3825 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1305-3612 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostic and Interventional Radiology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostic and Interventional Radiology |
| best_oa_location.landing_page_url | https://doi.org/10.4274/dir.2025.253134 |
| primary_location.id | doi:10.4274/dir.2025.253134 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210189829 |
| primary_location.source.issn | 1305-3612, 1305-3825 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1305-3612 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostic and Interventional Radiology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://dirjournal.org/pdf/beb8919b-f013-4ea1-b1c8-40332e840fe1/articles/dir.2025.253134/DIR-2025.253134.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostic and Interventional Radiology |
| primary_location.landing_page_url | https://doi.org/10.4274/dir.2025.253134 |
| publication_date | 2025-08-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2115942364, https://openalex.org/W2971057405, https://openalex.org/W3022086662, https://openalex.org/W2763794872, https://openalex.org/W4368367371, https://openalex.org/W2884436604, https://openalex.org/W4391574922, https://openalex.org/W4376226699, https://openalex.org/W2954996726, https://openalex.org/W4393202375, https://openalex.org/W4224044173, https://openalex.org/W4283694222 |
| referenced_works_count | 12 |
| abstract_inverted_index.GI | 3 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.to | 10 |
| abstract_inverted_index.DSA | 6 |
| abstract_inverted_index.may | 7 |
| abstract_inverted_index.time | 9 |
| abstract_inverted_index.reduce | 8 |
| abstract_inverted_index.patient | 14 |
| abstract_inverted_index.thereby | 12 |
| abstract_inverted_index.bleeding | 4 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.improving | 13 |
| abstract_inverted_index.outcomes. | 15 |
| abstract_inverted_index.embolization, | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.48773449 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |