Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2024.08.499
State estimation of nonlinear dynamical systems has gained significant attention due to its countless applications in control, signal processing, fault diagnosis, and power networks. The complexity posed by challenging nonlinearities like dead-zones, saturations, and linear rectification requires advanced state estimation. This paper presents a novel filtering technique designed for state-space Wiener systems encompassing these specific nonlinear behaviors. The filtering approach developed in this work introduces an explicit model for the probability function of the nonlinear output conditioned to the system state, which is derived from a Gaussian quadrature-based approximation. A Gaussian sum filtering algorithm is then used to obtain the filtering distributions and state estimates of systems with the aforementioned nonlinearities. Extensive numerical simulations are conducted to assess the accuracy of the proposed method compared to conventional techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2024.08.499
- OA Status
- diamond
- Cited By
- 1
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403075515
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403075515Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2024.08.499Digital Object Identifier
- Title
-
Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise NonlinearitiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Angel L. Cedeño, Rodrigo A. González, Juan C. AgüeroList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2024.08.499Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2024.08.499Direct OA link when available
- Concepts
-
Monotonic function, Gaussian, Piecewise, Mathematics, State space, Class (philosophy), Space (punctuation), Applied mathematics, Classical Wiener space, Pure mathematics, State (computer science), Wiener filter, Mathematical analysis, Computer science, Algorithm, Physics, Statistics, Wiener process, Artificial intelligence, Quantum mechanics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403075515 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| ids.openalex | https://openalex.org/W4403075515 |
| fwci | 0.63877855 |
| type | article |
| title | Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities |
| biblio.issue | 15 |
| biblio.volume | 58 |
| biblio.last_page | 30 |
| biblio.first_page | 25 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T13126 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9839000105857849 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Scientific Research and Discoveries |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C72169020 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7856262922286987 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q194404 |
| concepts[0].display_name | Monotonic function |
| concepts[1].id | https://openalex.org/C163716315 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6646438241004944 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[1].display_name | Gaussian |
| concepts[2].id | https://openalex.org/C164660894 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6293733716011047 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2037833 |
| concepts[2].display_name | Piecewise |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6203985810279846 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C72434380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6201526522636414 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[4].display_name | State space |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6138918399810791 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C2778572836 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4858214855194092 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[6].display_name | Space (punctuation) |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47537460923194885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C178166229 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47384029626846313 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5128316 |
| concepts[8].display_name | Classical Wiener space |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46143007278442383 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C48103436 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4581727981567383 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[10].display_name | State (computer science) |
| concepts[11].id | https://openalex.org/C18537770 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44455063343048096 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25523 |
| concepts[11].display_name | Wiener filter |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3760792016983032 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22686007618904114 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18766874074935913 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1695234477519989 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15053334832191467 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C60391097 |
| concepts[17].level | 2 |
| concepts[17].score | 0.11233192682266235 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1056809 |
| concepts[17].display_name | Wiener process |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10904398560523987 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.08364585041999817 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/monotonic-function |
| keywords[0].score | 0.7856262922286987 |
| keywords[0].display_name | Monotonic function |
| keywords[1].id | https://openalex.org/keywords/gaussian |
| keywords[1].score | 0.6646438241004944 |
| keywords[1].display_name | Gaussian |
| keywords[2].id | https://openalex.org/keywords/piecewise |
| keywords[2].score | 0.6293733716011047 |
| keywords[2].display_name | Piecewise |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6203985810279846 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/state-space |
| keywords[4].score | 0.6201526522636414 |
| keywords[4].display_name | State space |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.6138918399810791 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/space |
| keywords[6].score | 0.4858214855194092 |
| keywords[6].display_name | Space (punctuation) |
| keywords[7].id | https://openalex.org/keywords/applied-mathematics |
| keywords[7].score | 0.47537460923194885 |
| keywords[7].display_name | Applied mathematics |
| keywords[8].id | https://openalex.org/keywords/classical-wiener-space |
| keywords[8].score | 0.47384029626846313 |
| keywords[8].display_name | Classical Wiener space |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.46143007278442383 |
| keywords[9].display_name | Pure mathematics |
| keywords[10].id | https://openalex.org/keywords/state |
| keywords[10].score | 0.4581727981567383 |
| keywords[10].display_name | State (computer science) |
| keywords[11].id | https://openalex.org/keywords/wiener-filter |
| keywords[11].score | 0.44455063343048096 |
| keywords[11].display_name | Wiener filter |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.3760792016983032 |
| keywords[12].display_name | Mathematical analysis |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.22686007618904114 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.18766874074935913 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.1695234477519989 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.15053334832191467 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/wiener-process |
| keywords[17].score | 0.11233192682266235 |
| keywords[17].display_name | Wiener process |
| keywords[18].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[18].score | 0.10904398560523987 |
| keywords[18].display_name | Artificial intelligence |
| keywords[19].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[19].score | 0.08364585041999817 |
| keywords[19].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2024.08.499 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| locations[1].id | pmh:oai:pure.tue.nl:openaire/393cec56-c405-4ee3-add7-89c9bc1457eb |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Cedeño, A L, González, R & Agüero, J C 2024, 'Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities', IFAC-PapersOnLine, vol. 58, no. 15, pp. 25-30. https://doi.org/10.1016/j.ifacol.2024.08.499 |
| locations[1].landing_page_url | https://research.tue.nl/en/publications/393cec56-c405-4ee3-add7-89c9bc1457eb |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012474098 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5797-4231 |
| authorships[0].author.display_name | Angel L. Cedeño |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Angel L. Cedeño |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027415301 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5106-2784 |
| authorships[1].author.display_name | Rodrigo A. González |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rodrigo A. González |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5040738934 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7104-3233 |
| authorships[2].author.display_name | Juan C. Agüero |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Juan C. Agüero |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W2101820577, https://openalex.org/W4256047591, https://openalex.org/W4250635726, https://openalex.org/W2363620201, https://openalex.org/W4210841563, https://openalex.org/W1572331870, https://openalex.org/W4247791375, https://openalex.org/W4300952862, https://openalex.org/W2002093199, https://openalex.org/W2389284320 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ifacol.2024.08.499 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| primary_location.id | doi:10.1016/j.ifacol.2024.08.499 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2024.08.499 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2043357888, https://openalex.org/W3215332328, https://openalex.org/W4211089919, https://openalex.org/W4323847197, https://openalex.org/W1975330208, https://openalex.org/W2011691068, https://openalex.org/W2080180125, https://openalex.org/W4388903466, https://openalex.org/W2098613108, https://openalex.org/W3006464811, https://openalex.org/W2169277710, https://openalex.org/W6686450081, https://openalex.org/W6676012828, https://openalex.org/W4298204516, https://openalex.org/W2009331766, https://openalex.org/W2052881270, https://openalex.org/W1963841823, https://openalex.org/W2956013684, https://openalex.org/W2125105520, https://openalex.org/W2755589696, https://openalex.org/W2009061689, https://openalex.org/W2132894351, https://openalex.org/W4232464081, https://openalex.org/W2105934661, https://openalex.org/W2046245205, https://openalex.org/W2107585579, https://openalex.org/W2876610227, https://openalex.org/W4230675943, https://openalex.org/W2183194227, https://openalex.org/W1522531528, https://openalex.org/W304861154, https://openalex.org/W2487474971 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.a | 43, 85 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.by | 27 |
| abstract_inverted_index.in | 15, 61 |
| abstract_inverted_index.is | 82, 94 |
| abstract_inverted_index.of | 2, 72, 105, 120 |
| abstract_inverted_index.to | 11, 77, 97, 116, 125 |
| abstract_inverted_index.The | 24, 57 |
| abstract_inverted_index.and | 21, 33, 102 |
| abstract_inverted_index.are | 114 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 48, 68 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.sum | 91 |
| abstract_inverted_index.the | 69, 73, 78, 99, 108, 118, 121 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.from | 84 |
| abstract_inverted_index.like | 30 |
| abstract_inverted_index.then | 95 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.with | 107 |
| abstract_inverted_index.work | 63 |
| abstract_inverted_index.State | 0 |
| abstract_inverted_index.fault | 19 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.paper | 41 |
| abstract_inverted_index.posed | 26 |
| abstract_inverted_index.power | 22 |
| abstract_inverted_index.state | 38, 103 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.Wiener | 50 |
| abstract_inverted_index.assess | 117 |
| abstract_inverted_index.gained | 7 |
| abstract_inverted_index.linear | 34 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.obtain | 98 |
| abstract_inverted_index.output | 75 |
| abstract_inverted_index.signal | 17 |
| abstract_inverted_index.state, | 80 |
| abstract_inverted_index.system | 79 |
| abstract_inverted_index.derived | 83 |
| abstract_inverted_index.systems | 5, 51, 106 |
| abstract_inverted_index.Gaussian | 86, 90 |
| abstract_inverted_index.accuracy | 119 |
| abstract_inverted_index.advanced | 37 |
| abstract_inverted_index.approach | 59 |
| abstract_inverted_index.compared | 124 |
| abstract_inverted_index.control, | 16 |
| abstract_inverted_index.designed | 47 |
| abstract_inverted_index.explicit | 66 |
| abstract_inverted_index.function | 71 |
| abstract_inverted_index.presents | 42 |
| abstract_inverted_index.proposed | 122 |
| abstract_inverted_index.requires | 36 |
| abstract_inverted_index.specific | 54 |
| abstract_inverted_index.Extensive | 111 |
| abstract_inverted_index.algorithm | 93 |
| abstract_inverted_index.attention | 9 |
| abstract_inverted_index.conducted | 115 |
| abstract_inverted_index.countless | 13 |
| abstract_inverted_index.developed | 60 |
| abstract_inverted_index.dynamical | 4 |
| abstract_inverted_index.estimates | 104 |
| abstract_inverted_index.filtering | 45, 58, 92, 100 |
| abstract_inverted_index.networks. | 23 |
| abstract_inverted_index.nonlinear | 3, 55, 74 |
| abstract_inverted_index.numerical | 112 |
| abstract_inverted_index.technique | 46 |
| abstract_inverted_index.behaviors. | 56 |
| abstract_inverted_index.complexity | 25 |
| abstract_inverted_index.diagnosis, | 20 |
| abstract_inverted_index.estimation | 1 |
| abstract_inverted_index.introduces | 64 |
| abstract_inverted_index.challenging | 28 |
| abstract_inverted_index.conditioned | 76 |
| abstract_inverted_index.dead-zones, | 31 |
| abstract_inverted_index.estimation. | 39 |
| abstract_inverted_index.probability | 70 |
| abstract_inverted_index.processing, | 18 |
| abstract_inverted_index.significant | 8 |
| abstract_inverted_index.simulations | 113 |
| abstract_inverted_index.state-space | 49 |
| abstract_inverted_index.techniques. | 127 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.conventional | 126 |
| abstract_inverted_index.encompassing | 52 |
| abstract_inverted_index.saturations, | 32 |
| abstract_inverted_index.distributions | 101 |
| abstract_inverted_index.rectification | 35 |
| abstract_inverted_index.aforementioned | 109 |
| abstract_inverted_index.approximation. | 88 |
| abstract_inverted_index.nonlinearities | 29 |
| abstract_inverted_index.nonlinearities. | 110 |
| abstract_inverted_index.quadrature-based | 87 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.71531072 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |