GazeCLIP: Enhancing Gaze Estimation Through Text-Guided Multimodal Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.00260
Visual gaze estimation, with its wide-ranging application scenarios, has garnered increasing attention within the research community. Although existing approaches infer gaze solely from image signals, recent advances in visual-language collaboration have demonstrated that the integration of linguistic information can significantly enhance performance across various visual tasks. Leveraging the remarkable transferability of large-scale Contrastive Language-Image Pre-training (CLIP) models, we address the open and urgent question of how to effectively apply linguistic cues to gaze estimation. In this work, we propose GazeCLIP, a novel gaze estimation framework that deeply explores text-face collaboration. Specifically, we introduce a meticulously designed linguistic description generator to produce text signals enriched with coarse directional cues. Furthermore, we present a CLIP-based backbone adept at characterizing text-face pairs for gaze estimation, complemented by a fine-grained multimodal fusion module that models the intricate interrelationships between heterogeneous inputs. Extensive experiments on three challenging datasets demonstrate the superiority of GazeCLIP, which achieves state-of-the-art accuracy. Our findings underscore the potential of using visual-language collaboration to advance gaze estimation and open new avenues for future research in multimodal learning for visual tasks. The implementation code and the pre-trained model will be made publicly available.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.00260
- https://arxiv.org/pdf/2401.00260
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390528629
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390528629Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.00260Digital Object Identifier
- Title
-
GazeCLIP: Enhancing Gaze Estimation Through Text-Guided Multimodal LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-30Full publication date if available
- Authors
-
Jun Wang, Hao Ruan, Mingjie Wang, Chuanghui Zhang, Chunhua Li, Jun ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.00260Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.00260Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.00260Direct OA link when available
- Concepts
-
Gaze, Computer science, Artificial intelligence, Generator (circuit theory), Prior probability, Estimation, Machine learning, Human–computer interaction, Natural language processing, Bayesian probability, Power (physics), Management, Physics, Economics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390528629 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.00260 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.00260 |
| ids.openalex | https://openalex.org/W4390528629 |
| fwci | |
| type | preprint |
| title | GazeCLIP: Enhancing Gaze Estimation Through Text-Guided Multimodal Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11707 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Gaze Tracking and Assistive Technology |
| topics[1].id | https://openalex.org/T13731 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9763000011444092 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3322 |
| topics[1].subfield.display_name | Urban Studies |
| topics[1].display_name | Advanced Computing and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779916870 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8124886751174927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q14467155 |
| concepts[0].display_name | Gaze |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7907688617706299 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6104615926742554 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780992000 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5356160402297974 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17016113 |
| concepts[3].display_name | Generator (circuit theory) |
| concepts[4].id | https://openalex.org/C177769412 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5236108899116516 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[4].display_name | Prior probability |
| concepts[5].id | https://openalex.org/C96250715 |
| concepts[5].level | 2 |
| concepts[5].score | 0.430474191904068 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[5].display_name | Estimation |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37378475069999695 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C107457646 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35526666045188904 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[7].display_name | Human–computer interaction |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3272772431373596 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2843281030654907 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C163258240 |
| concepts[10].level | 2 |
| concepts[10].score | 0.11688888072967529 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[10].display_name | Power (physics) |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/gaze |
| keywords[0].score | 0.8124886751174927 |
| keywords[0].display_name | Gaze |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7907688617706299 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6104615926742554 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/generator |
| keywords[3].score | 0.5356160402297974 |
| keywords[3].display_name | Generator (circuit theory) |
| keywords[4].id | https://openalex.org/keywords/prior-probability |
| keywords[4].score | 0.5236108899116516 |
| keywords[4].display_name | Prior probability |
| keywords[5].id | https://openalex.org/keywords/estimation |
| keywords[5].score | 0.430474191904068 |
| keywords[5].display_name | Estimation |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.37378475069999695 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[7].score | 0.35526666045188904 |
| keywords[7].display_name | Human–computer interaction |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.3272772431373596 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.2843281030654907 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/power |
| keywords[10].score | 0.11688888072967529 |
| keywords[10].display_name | Power (physics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.00260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.00260 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.00260 |
| locations[1].id | doi:10.48550/arxiv.2401.00260 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.00260 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100712167 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9548-0411 |
| authorships[0].author.display_name | Jun Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Jun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102473660 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-5369-9462 |
| authorships[1].author.display_name | Hao Ruan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruan, Hao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100634347 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2419-8117 |
| authorships[2].author.display_name | Mingjie Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Mingjie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024059870 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chuanghui Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Chuanghui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100781358 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9947-6855 |
| authorships[4].author.display_name | Chunhua Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Chunhua |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101917144 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9352-9584 |
| authorships[5].author.display_name | Jun Zhou |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhou, Jun |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.00260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-03T00:00:00 |
| display_name | GazeCLIP: Enhancing Gaze Estimation Through Text-Guided Multimodal Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11707 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Gaze Tracking and Assistive Technology |
| related_works | https://openalex.org/W2580650124, https://openalex.org/W4386190339, https://openalex.org/W1880689012, https://openalex.org/W2968424575, https://openalex.org/W3142333283, https://openalex.org/W3122088529, https://openalex.org/W3014378845, https://openalex.org/W4240909707, https://openalex.org/W3041320102, https://openalex.org/W2111669074 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.00260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.00260 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.00260 |
| primary_location.id | pmh:oai:arXiv.org:2401.00260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.00260 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.00260 |
| publication_date | 2023-12-30 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 80, 93, 111, 124 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.at | 115 |
| abstract_inverted_index.be | 186 |
| abstract_inverted_index.by | 123 |
| abstract_inverted_index.in | 27, 172 |
| abstract_inverted_index.of | 35, 50, 64, 146, 157 |
| abstract_inverted_index.on | 139 |
| abstract_inverted_index.to | 66, 71, 99, 161 |
| abstract_inverted_index.we | 57, 77, 91, 109 |
| abstract_inverted_index.Our | 152 |
| abstract_inverted_index.The | 178 |
| abstract_inverted_index.and | 61, 165, 181 |
| abstract_inverted_index.can | 38 |
| abstract_inverted_index.for | 119, 169, 175 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.how | 65 |
| abstract_inverted_index.its | 4 |
| abstract_inverted_index.new | 167 |
| abstract_inverted_index.the | 13, 33, 47, 59, 131, 144, 155, 182 |
| abstract_inverted_index.code | 180 |
| abstract_inverted_index.cues | 70 |
| abstract_inverted_index.from | 22 |
| abstract_inverted_index.gaze | 1, 20, 72, 82, 120, 163 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.made | 187 |
| abstract_inverted_index.open | 60, 166 |
| abstract_inverted_index.text | 101 |
| abstract_inverted_index.that | 32, 85, 129 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.will | 185 |
| abstract_inverted_index.with | 3, 104 |
| abstract_inverted_index.adept | 114 |
| abstract_inverted_index.apply | 68 |
| abstract_inverted_index.cues. | 107 |
| abstract_inverted_index.image | 23 |
| abstract_inverted_index.infer | 19 |
| abstract_inverted_index.model | 184 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.pairs | 118 |
| abstract_inverted_index.three | 140 |
| abstract_inverted_index.using | 158 |
| abstract_inverted_index.which | 148 |
| abstract_inverted_index.work, | 76 |
| abstract_inverted_index.(CLIP) | 55 |
| abstract_inverted_index.Visual | 0 |
| abstract_inverted_index.across | 42 |
| abstract_inverted_index.coarse | 105 |
| abstract_inverted_index.deeply | 86 |
| abstract_inverted_index.fusion | 127 |
| abstract_inverted_index.future | 170 |
| abstract_inverted_index.models | 130 |
| abstract_inverted_index.module | 128 |
| abstract_inverted_index.recent | 25 |
| abstract_inverted_index.solely | 21 |
| abstract_inverted_index.tasks. | 45, 177 |
| abstract_inverted_index.urgent | 62 |
| abstract_inverted_index.visual | 44, 176 |
| abstract_inverted_index.within | 12 |
| abstract_inverted_index.address | 58 |
| abstract_inverted_index.advance | 162 |
| abstract_inverted_index.avenues | 168 |
| abstract_inverted_index.between | 134 |
| abstract_inverted_index.enhance | 40 |
| abstract_inverted_index.inputs. | 136 |
| abstract_inverted_index.models, | 56 |
| abstract_inverted_index.present | 110 |
| abstract_inverted_index.produce | 100 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.signals | 102 |
| abstract_inverted_index.various | 43 |
| abstract_inverted_index.Although | 16 |
| abstract_inverted_index.achieves | 149 |
| abstract_inverted_index.advances | 26 |
| abstract_inverted_index.backbone | 113 |
| abstract_inverted_index.datasets | 142 |
| abstract_inverted_index.designed | 95 |
| abstract_inverted_index.enriched | 103 |
| abstract_inverted_index.existing | 17 |
| abstract_inverted_index.explores | 87 |
| abstract_inverted_index.findings | 153 |
| abstract_inverted_index.garnered | 9 |
| abstract_inverted_index.learning | 174 |
| abstract_inverted_index.publicly | 188 |
| abstract_inverted_index.question | 63 |
| abstract_inverted_index.research | 14, 171 |
| abstract_inverted_index.signals, | 24 |
| abstract_inverted_index.Extensive | 137 |
| abstract_inverted_index.GazeCLIP, | 79, 147 |
| abstract_inverted_index.accuracy. | 151 |
| abstract_inverted_index.attention | 11 |
| abstract_inverted_index.framework | 84 |
| abstract_inverted_index.generator | 98 |
| abstract_inverted_index.intricate | 132 |
| abstract_inverted_index.introduce | 92 |
| abstract_inverted_index.potential | 156 |
| abstract_inverted_index.text-face | 88, 117 |
| abstract_inverted_index.CLIP-based | 112 |
| abstract_inverted_index.Leveraging | 46 |
| abstract_inverted_index.approaches | 18 |
| abstract_inverted_index.available. | 189 |
| abstract_inverted_index.community. | 15 |
| abstract_inverted_index.estimation | 83, 164 |
| abstract_inverted_index.increasing | 10 |
| abstract_inverted_index.linguistic | 36, 69, 96 |
| abstract_inverted_index.multimodal | 126, 173 |
| abstract_inverted_index.remarkable | 48 |
| abstract_inverted_index.scenarios, | 7 |
| abstract_inverted_index.underscore | 154 |
| abstract_inverted_index.Contrastive | 52 |
| abstract_inverted_index.application | 6 |
| abstract_inverted_index.challenging | 141 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.description | 97 |
| abstract_inverted_index.directional | 106 |
| abstract_inverted_index.effectively | 67 |
| abstract_inverted_index.estimation, | 2, 121 |
| abstract_inverted_index.estimation. | 73 |
| abstract_inverted_index.experiments | 138 |
| abstract_inverted_index.information | 37 |
| abstract_inverted_index.integration | 34 |
| abstract_inverted_index.large-scale | 51 |
| abstract_inverted_index.performance | 41 |
| abstract_inverted_index.pre-trained | 183 |
| abstract_inverted_index.superiority | 145 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.Pre-training | 54 |
| abstract_inverted_index.complemented | 122 |
| abstract_inverted_index.demonstrated | 31 |
| abstract_inverted_index.fine-grained | 125 |
| abstract_inverted_index.meticulously | 94 |
| abstract_inverted_index.wide-ranging | 5 |
| abstract_inverted_index.Specifically, | 90 |
| abstract_inverted_index.collaboration | 29, 160 |
| abstract_inverted_index.heterogeneous | 135 |
| abstract_inverted_index.significantly | 39 |
| abstract_inverted_index.Language-Image | 53 |
| abstract_inverted_index.characterizing | 116 |
| abstract_inverted_index.collaboration. | 89 |
| abstract_inverted_index.implementation | 179 |
| abstract_inverted_index.transferability | 49 |
| abstract_inverted_index.visual-language | 28, 159 |
| abstract_inverted_index.state-of-the-art | 150 |
| abstract_inverted_index.interrelationships | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |