GBERT: A hybrid deep learning model based on GPT-BERT for fake news detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.heliyon.2024.e35865
The digital era has expanded social exposure with easy internet access for mobile users, allowing for global communication. Now, people can get to know what is going on around the globe with just a click; however, this has also resulted in the issue of fake news. Fake news is content that pretends to be true but is actually false and is disseminated to defraud. Fake news poses a threat to harmony, politics, the economy, and public opinion. As a result, bogus news detection has become an emerging research domain to identify a given piece of text as genuine or fraudulent. In this paper, a new framework called Generative Bidirectional Encoder Representations from Transformers (GBERT) is proposed that leverages a combination of Generative pre-trained transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) and addresses the fake news classification problem. This framework combines the best features of both cutting-edge techniques-BERT's deep contextual understanding and the generative capabilities of GPT-to create a comprehensive representation of a given text. Both GPT and BERT are fine-tuned on two real-world benchmark corpora and have attained 95.30 % accuracy, 95.13 % precision, 97.35 % sensitivity, and a 96.23 % F1 score. The statistical test results indicate the effectiveness of the fine-tuned framework for fake news detection and suggest that it can be a promising approach for eradicating this global issue of fake news in the digital landscape.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.heliyon.2024.e35865
- OA Status
- gold
- Cited By
- 29
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401357833
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401357833Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.heliyon.2024.e35865Digital Object Identifier
- Title
-
GBERT: A hybrid deep learning model based on GPT-BERT for fake news detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-01Full publication date if available
- Authors
-
Pummy Dhiman, Amandeep Kaur, Deepali Gupta, Sapna Juneja, Ali Nauman, Ghulam MuhammadList of authors in order
- Landing page
-
https://doi.org/10.1016/j.heliyon.2024.e35865Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.heliyon.2024.e35865Direct OA link when available
- Concepts
-
Deep learning, Fake news, Artificial intelligence, Computer science, Machine learning, Internet privacyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 24, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401357833 |
|---|---|
| doi | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| ids.doi | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39220956 |
| ids.openalex | https://openalex.org/W4401357833 |
| fwci | 60.78347085 |
| type | article |
| title | GBERT: A hybrid deep learning model based on GPT-BERT for fake news detection |
| biblio.issue | 16 |
| biblio.volume | 10 |
| biblio.last_page | e35865 |
| biblio.first_page | e35865 |
| topics[0].id | https://openalex.org/T11147 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Misinformation and Its Impacts |
| topics[1].id | https://openalex.org/T11644 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Spam and Phishing Detection |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5949036478996277 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C2779756789 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5574761629104614 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28549308 |
| concepts[1].display_name | Fake news |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.522190511226654 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.42929667234420776 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3414105176925659 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C108827166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1748822033405304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[5].display_name | Internet privacy |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.5949036478996277 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/fake-news |
| keywords[1].score | 0.5574761629104614 |
| keywords[1].display_name | Fake news |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.522190511226654 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.42929667234420776 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3414105176925659 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/internet-privacy |
| keywords[5].score | 0.1748822033405304 |
| keywords[5].display_name | Internet privacy |
| language | en |
| locations[0].id | doi:10.1016/j.heliyon.2024.e35865 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898612692 |
| locations[0].source.issn | 2405-8440 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8440 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Heliyon |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Heliyon |
| locations[0].landing_page_url | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| locations[1].id | pmid:39220956 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Heliyon |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39220956 |
| locations[2].id | pmh:oai:doaj.org/article:c903e53914554ebebfe65ce104192467 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Heliyon, Vol 10, Iss 16, Pp e35865- (2024) |
| locations[2].landing_page_url | https://doaj.org/article/c903e53914554ebebfe65ce104192467 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11365402 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Heliyon |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11365402 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5075625518 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6610-6383 |
| authorships[0].author.display_name | Pummy Dhiman |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[0].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[0].institutions[0].id | https://openalex.org/I74319210 |
| authorships[0].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Chitkara University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pummy Dhiman |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[1].author.id | https://openalex.org/A5009241024 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7282-8902 |
| authorships[1].author.display_name | Amandeep Kaur |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[1].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[1].institutions[0].id | https://openalex.org/I74319210 |
| authorships[1].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chitkara University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amandeep Kaur |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[2].author.id | https://openalex.org/A5055907404 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3207-5248 |
| authorships[2].author.display_name | Deepali Gupta |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[2].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[2].institutions[0].id | https://openalex.org/I74319210 |
| authorships[2].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Chitkara University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Deepali Gupta |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India |
| authorships[3].author.id | https://openalex.org/A5048859324 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sapna Juneja |
| authorships[3].affiliations[0].raw_affiliation_string | Department of CSE (AI), KIET Group of Institutions, Ghaziabad, 201206, India |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sapna Juneja |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of CSE (AI), KIET Group of Institutions, Ghaziabad, 201206, India |
| authorships[4].author.id | https://openalex.org/A5090587594 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2133-5286 |
| authorships[4].author.display_name | Ali Nauman |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering , Yeungnam University , Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I55240360 |
| authorships[4].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Yeungnam University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ali Nauman |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering , Yeungnam University , Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5080711681 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9781-3969 |
| authorships[5].author.display_name | Ghulam Muhammad |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I28022161 |
| authorships[5].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | King Saud University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ghulam Muhammad |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GBERT: A hybrid deep learning model based on GPT-BERT for fake news detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11147 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Misinformation and Its Impacts |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3046775127, https://openalex.org/W3082895349 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 24 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.heliyon.2024.e35865 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898612692 |
| best_oa_location.source.issn | 2405-8440 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8440 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Heliyon |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Heliyon |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| primary_location.id | doi:10.1016/j.heliyon.2024.e35865 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898612692 |
| primary_location.source.issn | 2405-8440 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8440 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Heliyon |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Heliyon |
| primary_location.landing_page_url | https://doi.org/10.1016/j.heliyon.2024.e35865 |
| publication_date | 2024-08-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2742330194, https://openalex.org/W4320728788, https://openalex.org/W3208189837, https://openalex.org/W4367627723, https://openalex.org/W6792304553, https://openalex.org/W6805172842, https://openalex.org/W6739901393, https://openalex.org/W4200069439, https://openalex.org/W6838671621, https://openalex.org/W6758335716, https://openalex.org/W4205754643, https://openalex.org/W6851700545, https://openalex.org/W3108671495, https://openalex.org/W4389160627, https://openalex.org/W6717661696, https://openalex.org/W6858055675, https://openalex.org/W3152519896, https://openalex.org/W3118463782, https://openalex.org/W6787695717, https://openalex.org/W3205757788, https://openalex.org/W4319320113, https://openalex.org/W4387807044, https://openalex.org/W4205633808, https://openalex.org/W6803118573, https://openalex.org/W6796653167, https://openalex.org/W4281898186, https://openalex.org/W6852481957, https://openalex.org/W4288538225, https://openalex.org/W6855604291, https://openalex.org/W6745474050, https://openalex.org/W6735963731, https://openalex.org/W3164279875, https://openalex.org/W4210299703, https://openalex.org/W4213079790, https://openalex.org/W4226297919, https://openalex.org/W4200097352, https://openalex.org/W6745744838, https://openalex.org/W4391872494, https://openalex.org/W6864762050, https://openalex.org/W6787128884, https://openalex.org/W4391360895, https://openalex.org/W6861276541, https://openalex.org/W6868355470, https://openalex.org/W6851655570, https://openalex.org/W6846100707, https://openalex.org/W6850501444, https://openalex.org/W6849859687, https://openalex.org/W2945044133, https://openalex.org/W4254639601, https://openalex.org/W4362500576, https://openalex.org/W4245696960, https://openalex.org/W4303857474, https://openalex.org/W4250879943, https://openalex.org/W4320803104, https://openalex.org/W4391503438, https://openalex.org/W4200177521, https://openalex.org/W4250411456, https://openalex.org/W4378072572, https://openalex.org/W4399377864, https://openalex.org/W3138979178, https://openalex.org/W3012090365, https://openalex.org/W4367397315, https://openalex.org/W4388018269, https://openalex.org/W4200373042, https://openalex.org/W4323655380, https://openalex.org/W2604264634, https://openalex.org/W4395070449, https://openalex.org/W3205684765, https://openalex.org/W4255102369, https://openalex.org/W4385245566 |
| referenced_works_count | 70 |
| abstract_inverted_index.% | 181, 184, 187, 192 |
| abstract_inverted_index.a | 33, 67, 78, 91, 103, 118, 159, 163, 190, 216 |
| abstract_inverted_index.As | 77 |
| abstract_inverted_index.F1 | 193 |
| abstract_inverted_index.In | 100 |
| abstract_inverted_index.an | 85 |
| abstract_inverted_index.as | 96 |
| abstract_inverted_index.be | 53, 215 |
| abstract_inverted_index.in | 40, 227 |
| abstract_inverted_index.is | 25, 48, 56, 60, 114 |
| abstract_inverted_index.it | 213 |
| abstract_inverted_index.of | 43, 94, 120, 145, 156, 162, 202, 224 |
| abstract_inverted_index.on | 27, 172 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 22, 52, 62, 69, 89 |
| abstract_inverted_index.GPT | 167 |
| abstract_inverted_index.The | 0, 195 |
| abstract_inverted_index.and | 59, 74, 125, 132, 152, 168, 177, 189, 210 |
| abstract_inverted_index.are | 170 |
| abstract_inverted_index.but | 55 |
| abstract_inverted_index.can | 20, 214 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.for | 11, 15, 206, 219 |
| abstract_inverted_index.get | 21 |
| abstract_inverted_index.has | 3, 37, 83 |
| abstract_inverted_index.new | 104 |
| abstract_inverted_index.the | 29, 41, 72, 134, 142, 153, 200, 203, 228 |
| abstract_inverted_index.two | 173 |
| abstract_inverted_index.BERT | 169 |
| abstract_inverted_index.Both | 166 |
| abstract_inverted_index.Fake | 46, 64 |
| abstract_inverted_index.Now, | 18 |
| abstract_inverted_index.This | 139 |
| abstract_inverted_index.also | 38 |
| abstract_inverted_index.best | 143 |
| abstract_inverted_index.both | 146 |
| abstract_inverted_index.deep | 149 |
| abstract_inverted_index.easy | 8 |
| abstract_inverted_index.fake | 44, 135, 207, 225 |
| abstract_inverted_index.from | 111, 129 |
| abstract_inverted_index.have | 178 |
| abstract_inverted_index.just | 32 |
| abstract_inverted_index.know | 23 |
| abstract_inverted_index.news | 47, 65, 81, 136, 208, 226 |
| abstract_inverted_index.test | 197 |
| abstract_inverted_index.text | 95 |
| abstract_inverted_index.that | 50, 116, 212 |
| abstract_inverted_index.this | 36, 101, 221 |
| abstract_inverted_index.true | 54 |
| abstract_inverted_index.what | 24 |
| abstract_inverted_index.with | 7, 31 |
| abstract_inverted_index.(GPT) | 124 |
| abstract_inverted_index.95.13 | 183 |
| abstract_inverted_index.95.30 | 180 |
| abstract_inverted_index.96.23 | 191 |
| abstract_inverted_index.97.35 | 186 |
| abstract_inverted_index.bogus | 80 |
| abstract_inverted_index.false | 58 |
| abstract_inverted_index.given | 92, 164 |
| abstract_inverted_index.globe | 30 |
| abstract_inverted_index.going | 26 |
| abstract_inverted_index.issue | 42, 223 |
| abstract_inverted_index.news. | 45 |
| abstract_inverted_index.piece | 93 |
| abstract_inverted_index.poses | 66 |
| abstract_inverted_index.text. | 165 |
| abstract_inverted_index.(BERT) | 131 |
| abstract_inverted_index.GPT-to | 157 |
| abstract_inverted_index.access | 10 |
| abstract_inverted_index.around | 28 |
| abstract_inverted_index.become | 84 |
| abstract_inverted_index.called | 106 |
| abstract_inverted_index.click; | 34 |
| abstract_inverted_index.create | 158 |
| abstract_inverted_index.domain | 88 |
| abstract_inverted_index.global | 16, 222 |
| abstract_inverted_index.mobile | 12 |
| abstract_inverted_index.paper, | 102 |
| abstract_inverted_index.people | 19 |
| abstract_inverted_index.public | 75 |
| abstract_inverted_index.score. | 194 |
| abstract_inverted_index.social | 5 |
| abstract_inverted_index.threat | 68 |
| abstract_inverted_index.users, | 13 |
| abstract_inverted_index.(GBERT) | 113 |
| abstract_inverted_index.Encoder | 109, 127 |
| abstract_inverted_index.content | 49 |
| abstract_inverted_index.corpora | 176 |
| abstract_inverted_index.digital | 1, 229 |
| abstract_inverted_index.genuine | 97 |
| abstract_inverted_index.result, | 79 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.suggest | 211 |
| abstract_inverted_index.actually | 57 |
| abstract_inverted_index.allowing | 14 |
| abstract_inverted_index.approach | 218 |
| abstract_inverted_index.attained | 179 |
| abstract_inverted_index.combines | 141 |
| abstract_inverted_index.defraud. | 63 |
| abstract_inverted_index.economy, | 73 |
| abstract_inverted_index.emerging | 86 |
| abstract_inverted_index.expanded | 4 |
| abstract_inverted_index.exposure | 6 |
| abstract_inverted_index.features | 144 |
| abstract_inverted_index.harmony, | 70 |
| abstract_inverted_index.however, | 35 |
| abstract_inverted_index.identify | 90 |
| abstract_inverted_index.indicate | 199 |
| abstract_inverted_index.internet | 9 |
| abstract_inverted_index.opinion. | 76 |
| abstract_inverted_index.pretends | 51 |
| abstract_inverted_index.problem. | 138 |
| abstract_inverted_index.proposed | 115 |
| abstract_inverted_index.research | 87 |
| abstract_inverted_index.resulted | 39 |
| abstract_inverted_index.accuracy, | 182 |
| abstract_inverted_index.addresses | 133 |
| abstract_inverted_index.benchmark | 175 |
| abstract_inverted_index.detection | 82, 209 |
| abstract_inverted_index.framework | 105, 140, 205 |
| abstract_inverted_index.leverages | 117 |
| abstract_inverted_index.politics, | 71 |
| abstract_inverted_index.promising | 217 |
| abstract_inverted_index.Generative | 107, 121 |
| abstract_inverted_index.contextual | 150 |
| abstract_inverted_index.fine-tuned | 171, 204 |
| abstract_inverted_index.generative | 154 |
| abstract_inverted_index.landscape. | 230 |
| abstract_inverted_index.precision, | 185 |
| abstract_inverted_index.real-world | 174 |
| abstract_inverted_index.combination | 119 |
| abstract_inverted_index.eradicating | 220 |
| abstract_inverted_index.fraudulent. | 99 |
| abstract_inverted_index.pre-trained | 122 |
| abstract_inverted_index.statistical | 196 |
| abstract_inverted_index.transformer | 123 |
| abstract_inverted_index.Transformers | 112, 130 |
| abstract_inverted_index.capabilities | 155 |
| abstract_inverted_index.cutting-edge | 147 |
| abstract_inverted_index.disseminated | 61 |
| abstract_inverted_index.sensitivity, | 188 |
| abstract_inverted_index.Bidirectional | 108, 126 |
| abstract_inverted_index.comprehensive | 160 |
| abstract_inverted_index.effectiveness | 201 |
| abstract_inverted_index.understanding | 151 |
| abstract_inverted_index.classification | 137 |
| abstract_inverted_index.communication. | 17 |
| abstract_inverted_index.representation | 161 |
| abstract_inverted_index.Representations | 110, 128 |
| abstract_inverted_index.techniques-BERT's | 148 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5055907404, https://openalex.org/A5009241024, https://openalex.org/A5080711681, https://openalex.org/A5048859324, https://openalex.org/A5090587594, https://openalex.org/A5075625518 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I28022161, https://openalex.org/I55240360, https://openalex.org/I74319210 |
| citation_normalized_percentile.value | 0.99850433 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |