GD-Det: Low-Data Object Detection in Foggy Scenarios for Unmanned Aerial Vehicle Imagery Using Re-Parameterization and Cross-Scale Gather-and-Distribute Mechanisms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17050783
Unmanned Aerial Vehicles (UAVs) play an extremely important role in real-time object detection for maritime emergency rescue missions. However, marine accidents often occur in low-visibility weather conditions, resulting in poor image quality and a lack of object detection samples, which significantly reduces detection accuracy. To tackle these issues, we propose GD-Det, a low-data object detection model with high accuracy, specifically designed to handle limited sample sizes and low-quality images. The model is primarily composed of three components: (i) A lightweight re-parameterization feature extraction module which integrates RepVGG blocks into multi-concat blocks to enhance the model’s spatial perception and feature diversity during training. Meanwhile, it reduces computational cost in the inference phase through the re-parameterization mechanism. (ii) A cross-scale gather-and-distribute pyramid module, which helps to augment the relationship representation of four-scale features via flexible skip fusion and distribution strategies. (iii) A decoupled prediction module with three branches is to implement classification and regression, enhancing detection accuracy by combining the prediction values from tri-level features. (iv) We also use a domain-adaptive training strategy with knowledge transfer to handle low-data issues. We conducted low-data training and comparison experiments using our constructed dataset AFO-fog. Our model achieved an overall detection accuracy of 84.8%, which is superior to other models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17050783
- https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728
- OA Status
- gold
- Cited By
- 1
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407910019
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407910019Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17050783Digital Object Identifier
- Title
-
GD-Det: Low-Data Object Detection in Foggy Scenarios for Unmanned Aerial Vehicle Imagery Using Re-Parameterization and Cross-Scale Gather-and-Distribute MechanismsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-24Full publication date if available
- Authors
-
Rui Shi, Lili Zhang, Gaoxu Wang, Shutong Jia, Ning Zhang, Chensu WangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17050783Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728Direct OA link when available
- Concepts
-
Remote sensing, Computer science, Scale (ratio), Computer vision, Artificial intelligence, Geology, Cartography, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407910019 |
|---|---|
| doi | https://doi.org/10.3390/rs17050783 |
| ids.doi | https://doi.org/10.3390/rs17050783 |
| ids.openalex | https://openalex.org/W4407910019 |
| fwci | 4.77340731 |
| type | article |
| title | GD-Det: Low-Data Object Detection in Foggy Scenarios for Unmanned Aerial Vehicle Imagery Using Re-Parameterization and Cross-Scale Gather-and-Distribute Mechanisms |
| awards[0].id | https://openalex.org/G2832796629 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023YFC3006500 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 5 |
| biblio.volume | 17 |
| biblio.last_page | 783 |
| biblio.first_page | 783 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6895298361778259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6393799185752869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5834240317344666 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3934059739112854 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37225112318992615 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.24494600296020508 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C58640448 |
| concepts[6].level | 1 |
| concepts[6].score | 0.154537171125412 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[6].display_name | Cartography |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.12394797801971436 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.6895298361778259 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6393799185752869 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.5834240317344666 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3934059739112854 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.37225112318992615 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.24494600296020508 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/cartography |
| keywords[6].score | 0.154537171125412 |
| keywords[6].display_name | Cartography |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.12394797801971436 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs17050783 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17050783 |
| locations[1].id | pmh:oai:doaj.org/article:0714fced079b41f3aad05036c789d42c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 5, p 783 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0714fced079b41f3aad05036c789d42c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5087623786 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0411-3067 |
| authorships[0].author.display_name | Rui Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210099662, https://openalex.org/I4210111986 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210111986 |
| authorships[0].institutions[0].ror | https://ror.org/02403qw73 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210111986 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Hydraulic Research Institute |
| authorships[0].institutions[1].id | https://openalex.org/I4210099662 |
| authorships[0].institutions[1].ror | https://ror.org/012wsxz85 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I163340411, https://openalex.org/I4210099662, https://openalex.org/I4210111986, https://openalex.org/I4210120069, https://openalex.org/I4210127390 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China |
| authorships[1].author.id | https://openalex.org/A5100461170 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9429-8378 |
| authorships[1].author.display_name | Lili Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China |
| authorships[1].institutions[0].id | https://openalex.org/I163340411 |
| authorships[1].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hohai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lili Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China |
| authorships[2].author.id | https://openalex.org/A5102817607 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8878-0491 |
| authorships[2].author.display_name | Gaoxu Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210099662, https://openalex.org/I4210111986 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210111986 |
| authorships[2].institutions[0].ror | https://ror.org/02403qw73 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210111986 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing Hydraulic Research Institute |
| authorships[2].institutions[1].id | https://openalex.org/I4210099662 |
| authorships[2].institutions[1].ror | https://ror.org/012wsxz85 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I163340411, https://openalex.org/I4210099662, https://openalex.org/I4210111986, https://openalex.org/I4210120069, https://openalex.org/I4210127390 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gaoxu Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China |
| authorships[3].author.id | https://openalex.org/A5060542282 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shutong Jia |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Hohai University, Changzhou 213212, China |
| authorships[3].institutions[0].id | https://openalex.org/I163340411 |
| authorships[3].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hohai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shutong Jia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Science and Engineering, Hohai University, Changzhou 213212, China |
| authorships[4].author.id | https://openalex.org/A5100404886 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8781-4925 |
| authorships[4].author.display_name | Ning Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China |
| authorships[4].institutions[0].id | https://openalex.org/I163340411 |
| authorships[4].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hohai University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ning Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China |
| authorships[5].author.id | https://openalex.org/A5010999533 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6996-149X |
| authorships[5].author.display_name | Chensu Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I36152291 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China |
| authorships[5].institutions[0].id | https://openalex.org/I36152291 |
| authorships[5].institutions[0].ror | https://ror.org/05sbgwt55 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I36152291 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Henan University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chensu Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GD-Det: Low-Data Object Detection in Foggy Scenarios for Unmanned Aerial Vehicle Imagery Using Re-Parameterization and Cross-Scale Gather-and-Distribute Mechanisms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17050783 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17050783 |
| primary_location.id | doi:10.3390/rs17050783 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/5/783/pdf?version=1740382728 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17050783 |
| publication_date | 2025-02-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4402727503, https://openalex.org/W4381746892, https://openalex.org/W4403534650, https://openalex.org/W4388713799, https://openalex.org/W6864705897, https://openalex.org/W4403248403, https://openalex.org/W4404959163, https://openalex.org/W3033131612, https://openalex.org/W2109255472, https://openalex.org/W1536680647, https://openalex.org/W639708223, https://openalex.org/W2963857746, https://openalex.org/W2964241181, https://openalex.org/W2899607431, https://openalex.org/W2963037989, https://openalex.org/W2193145675, https://openalex.org/W3012573144, https://openalex.org/W2925359305, https://openalex.org/W2934198733, https://openalex.org/W2551589584, https://openalex.org/W4392940716, https://openalex.org/W4402916971, https://openalex.org/W4377024739, https://openalex.org/W3194218149, https://openalex.org/W2945947917, https://openalex.org/W2963125010, https://openalex.org/W2963418739, https://openalex.org/W2883780447, https://openalex.org/W1903029394, https://openalex.org/W2963163009, https://openalex.org/W6762585180, https://openalex.org/W4403943510, https://openalex.org/W4402774445, https://openalex.org/W4389890947, https://openalex.org/W4402628873, https://openalex.org/W4389336998, https://openalex.org/W3167976421, https://openalex.org/W3171038842, https://openalex.org/W4387211168, https://openalex.org/W4403534144, https://openalex.org/W2565639579, https://openalex.org/W4386976814, https://openalex.org/W4386025028, https://openalex.org/W3125862622, https://openalex.org/W2765741757, https://openalex.org/W3106250896, https://openalex.org/W4396827044 |
| referenced_works_count | 47 |
| abstract_inverted_index.A | 78, 116, 139 |
| abstract_inverted_index.a | 33, 51, 167 |
| abstract_inverted_index.To | 44 |
| abstract_inverted_index.We | 164, 178 |
| abstract_inverted_index.an | 5, 193 |
| abstract_inverted_index.by | 155 |
| abstract_inverted_index.in | 9, 23, 28, 107 |
| abstract_inverted_index.is | 71, 146, 200 |
| abstract_inverted_index.it | 103 |
| abstract_inverted_index.of | 35, 74, 128, 197 |
| abstract_inverted_index.to | 61, 91, 123, 147, 174, 202 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.(i) | 77 |
| abstract_inverted_index.Our | 190 |
| abstract_inverted_index.The | 69 |
| abstract_inverted_index.and | 32, 66, 97, 135, 150, 182 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.our | 186 |
| abstract_inverted_index.the | 93, 108, 112, 125, 157 |
| abstract_inverted_index.use | 166 |
| abstract_inverted_index.via | 131 |
| abstract_inverted_index.(ii) | 115 |
| abstract_inverted_index.(iv) | 163 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.cost | 106 |
| abstract_inverted_index.from | 160 |
| abstract_inverted_index.high | 57 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.lack | 34 |
| abstract_inverted_index.play | 4 |
| abstract_inverted_index.poor | 29 |
| abstract_inverted_index.role | 8 |
| abstract_inverted_index.skip | 133 |
| abstract_inverted_index.with | 56, 143, 171 |
| abstract_inverted_index.(iii) | 138 |
| abstract_inverted_index.helps | 122 |
| abstract_inverted_index.image | 30 |
| abstract_inverted_index.model | 55, 70, 191 |
| abstract_inverted_index.occur | 22 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.other | 203 |
| abstract_inverted_index.phase | 110 |
| abstract_inverted_index.sizes | 65 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.three | 75, 144 |
| abstract_inverted_index.using | 185 |
| abstract_inverted_index.which | 39, 84, 121, 199 |
| abstract_inverted_index.(UAVs) | 3 |
| abstract_inverted_index.84.8%, | 198 |
| abstract_inverted_index.Aerial | 1 |
| abstract_inverted_index.RepVGG | 86 |
| abstract_inverted_index.blocks | 87, 90 |
| abstract_inverted_index.during | 100 |
| abstract_inverted_index.fusion | 134 |
| abstract_inverted_index.handle | 62, 175 |
| abstract_inverted_index.marine | 19 |
| abstract_inverted_index.module | 83, 142 |
| abstract_inverted_index.object | 11, 36, 53 |
| abstract_inverted_index.rescue | 16 |
| abstract_inverted_index.sample | 64 |
| abstract_inverted_index.tackle | 45 |
| abstract_inverted_index.values | 159 |
| abstract_inverted_index.GD-Det, | 50 |
| abstract_inverted_index.augment | 124 |
| abstract_inverted_index.dataset | 188 |
| abstract_inverted_index.enhance | 92 |
| abstract_inverted_index.feature | 81, 98 |
| abstract_inverted_index.images. | 68 |
| abstract_inverted_index.issues, | 47 |
| abstract_inverted_index.issues. | 177 |
| abstract_inverted_index.limited | 63 |
| abstract_inverted_index.models. | 204 |
| abstract_inverted_index.module, | 120 |
| abstract_inverted_index.overall | 194 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.pyramid | 119 |
| abstract_inverted_index.quality | 31 |
| abstract_inverted_index.reduces | 41, 104 |
| abstract_inverted_index.spatial | 95 |
| abstract_inverted_index.through | 111 |
| abstract_inverted_index.weather | 25 |
| abstract_inverted_index.AFO-fog. | 189 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Unmanned | 0 |
| abstract_inverted_index.Vehicles | 2 |
| abstract_inverted_index.accuracy | 154, 196 |
| abstract_inverted_index.achieved | 192 |
| abstract_inverted_index.branches | 145 |
| abstract_inverted_index.composed | 73 |
| abstract_inverted_index.designed | 60 |
| abstract_inverted_index.features | 130 |
| abstract_inverted_index.flexible | 132 |
| abstract_inverted_index.low-data | 52, 176, 180 |
| abstract_inverted_index.maritime | 14 |
| abstract_inverted_index.samples, | 38 |
| abstract_inverted_index.strategy | 170 |
| abstract_inverted_index.superior | 201 |
| abstract_inverted_index.training | 169, 181 |
| abstract_inverted_index.transfer | 173 |
| abstract_inverted_index.accidents | 20 |
| abstract_inverted_index.accuracy, | 58 |
| abstract_inverted_index.accuracy. | 43 |
| abstract_inverted_index.combining | 156 |
| abstract_inverted_index.conducted | 179 |
| abstract_inverted_index.decoupled | 140 |
| abstract_inverted_index.detection | 12, 37, 42, 54, 153, 195 |
| abstract_inverted_index.diversity | 99 |
| abstract_inverted_index.emergency | 15 |
| abstract_inverted_index.enhancing | 152 |
| abstract_inverted_index.extremely | 6 |
| abstract_inverted_index.features. | 162 |
| abstract_inverted_index.implement | 148 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.inference | 109 |
| abstract_inverted_index.knowledge | 172 |
| abstract_inverted_index.missions. | 17 |
| abstract_inverted_index.model’s | 94 |
| abstract_inverted_index.primarily | 72 |
| abstract_inverted_index.real-time | 10 |
| abstract_inverted_index.resulting | 27 |
| abstract_inverted_index.training. | 101 |
| abstract_inverted_index.tri-level | 161 |
| abstract_inverted_index.Meanwhile, | 102 |
| abstract_inverted_index.comparison | 183 |
| abstract_inverted_index.extraction | 82 |
| abstract_inverted_index.four-scale | 129 |
| abstract_inverted_index.integrates | 85 |
| abstract_inverted_index.mechanism. | 114 |
| abstract_inverted_index.perception | 96 |
| abstract_inverted_index.prediction | 141, 158 |
| abstract_inverted_index.components: | 76 |
| abstract_inverted_index.conditions, | 26 |
| abstract_inverted_index.constructed | 187 |
| abstract_inverted_index.cross-scale | 117 |
| abstract_inverted_index.experiments | 184 |
| abstract_inverted_index.lightweight | 79 |
| abstract_inverted_index.low-quality | 67 |
| abstract_inverted_index.regression, | 151 |
| abstract_inverted_index.strategies. | 137 |
| abstract_inverted_index.distribution | 136 |
| abstract_inverted_index.multi-concat | 89 |
| abstract_inverted_index.relationship | 126 |
| abstract_inverted_index.specifically | 59 |
| abstract_inverted_index.computational | 105 |
| abstract_inverted_index.significantly | 40 |
| abstract_inverted_index.classification | 149 |
| abstract_inverted_index.low-visibility | 24 |
| abstract_inverted_index.representation | 127 |
| abstract_inverted_index.domain-adaptive | 168 |
| abstract_inverted_index.re-parameterization | 80, 113 |
| abstract_inverted_index.gather-and-distribute | 118 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.83183531 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |