Gear Health Monitoring and RUL Prediction Based on MSB Analysis Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/jsen.2022.3145194
Gearbox is a key component in mechanical transmission and faults on gears will lead to breakdowns and unscheduled downtime. Health condition monitoring and remaining useful life (RUL) prediction can provide sufficient leading time for gearbox timely maintenance. To some degree, the RUL prediction accuracy relies on the performance of the diagnostic features on reflecting the degradation of gears during its lifetime. However, most current commonly used features fail to reveal the fault mechanism hidden behind vibration signal and hold poor capability on noise cancellation. In this paper, modulation signal bispectrum (MSB) is proposed to reveal the signal modulation mechanism and monitor the health condition of gears. Then, an improved relevance vector machine (IMRVM) is introduced to realize the process of RUL prediction. Last, a run-to-failure test rig is designed to verify the effectiveness the MSB features for RUL prediction. Results show that MSB possesses better performance on denoising and capturing the weak variation due to modulation in gear system. The optimal MSB features after selection show better performance on reflecting the degradation of the gear and have higher prediction accuracy for gear RUL prediction comparing with RMS, kurtosis and so on. These findings provided more useful and practical information for gear RUL prediction and gearbox maintenance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jsen.2022.3145194
- OA Status
- green
- Cited By
- 26
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4206834892
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4206834892Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jsen.2022.3145194Digital Object Identifier
- Title
-
Gear Health Monitoring and RUL Prediction Based on MSB AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-20Full publication date if available
- Authors
-
Yaoyao Han, Minmin Xu, Xiuquan Sun, Xiaoxi Ding, Xiaohong Chen, Fengshou GuList of authors in order
- Landing page
-
https://doi.org/10.1109/jsen.2022.3145194Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.scopus.com/inward/record.url?scp=85123687848&partnerID=8YFLogxKDirect OA link when available
- Concepts
-
Downtime, Bispectrum, Engineering, SIGNAL (programming language), Condition monitoring, Kurtosis, Prognostics, Noise (video), Vibration, Modulation (music), Process (computing), Fault (geology), Reliability engineering, Support vector machine, Computer science, Automotive engineering, Artificial intelligence, Geology, Seismology, Quantum mechanics, Mathematics, Programming language, Spectral density, Telecommunications, Physics, Electrical engineering, Aesthetics, Statistics, Philosophy, Image (mathematics), Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 12, 2023: 3, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4206834892 |
|---|---|
| doi | https://doi.org/10.1109/jsen.2022.3145194 |
| ids.doi | https://doi.org/10.1109/jsen.2022.3145194 |
| ids.openalex | https://openalex.org/W4206834892 |
| fwci | 3.88122418 |
| type | article |
| title | Gear Health Monitoring and RUL Prediction Based on MSB Analysis |
| awards[0].id | https://openalex.org/G6341583276 |
| awards[0].funder_id | https://openalex.org/F4320335776 |
| awards[0].display_name | |
| awards[0].funder_award_id | CYB19008 |
| awards[0].funder_display_name | Graduate School, Chongqing University |
| awards[1].id | https://openalex.org/G7328214248 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 52035002 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G232797814 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2020YFB1711703 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| awards[3].id | https://openalex.org/G156161656 |
| awards[3].funder_id | https://openalex.org/F4320335787 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2019CDCGJX214 |
| awards[3].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 5 |
| biblio.volume | 22 |
| biblio.last_page | 4409 |
| biblio.first_page | 4400 |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T11062 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Gear and Bearing Dynamics Analysis |
| topics[2].id | https://openalex.org/T10188 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9800000190734863 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Advanced machining processes and optimization |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335776 |
| funders[1].ror | |
| funders[1].display_name | Graduate School, Chongqing University |
| funders[2].id | https://openalex.org/F4320335777 |
| funders[2].ror | |
| funders[2].display_name | National Key Research and Development Program of China |
| funders[3].id | https://openalex.org/F4320335787 |
| funders[3].ror | |
| funders[3].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180591934 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7975744009017944 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1253369 |
| concepts[0].display_name | Downtime |
| concepts[1].id | https://openalex.org/C114148568 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6140480041503906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2410583 |
| concepts[1].display_name | Bispectrum |
| concepts[2].id | https://openalex.org/C127413603 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5923140645027161 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[2].display_name | Engineering |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.585974395275116 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C2775846686 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5849988460540771 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q643012 |
| concepts[4].display_name | Condition monitoring |
| concepts[5].id | https://openalex.org/C166963901 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5602446794509888 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q287251 |
| concepts[5].display_name | Kurtosis |
| concepts[6].id | https://openalex.org/C129364497 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5520169138908386 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3042561 |
| concepts[6].display_name | Prognostics |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.539238452911377 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C198394728 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5332581400871277 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3695508 |
| concepts[8].display_name | Vibration |
| concepts[9].id | https://openalex.org/C123079801 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5032896399497986 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q750240 |
| concepts[9].display_name | Modulation (music) |
| concepts[10].id | https://openalex.org/C98045186 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4697727560997009 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[10].display_name | Process (computing) |
| concepts[11].id | https://openalex.org/C175551986 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4563172459602356 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[11].display_name | Fault (geology) |
| concepts[12].id | https://openalex.org/C200601418 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4528539776802063 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[12].display_name | Reliability engineering |
| concepts[13].id | https://openalex.org/C12267149 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42823293805122375 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[13].display_name | Support vector machine |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.37069690227508545 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C171146098 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3216322660446167 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[15].display_name | Automotive engineering |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.21902266144752502 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C127313418 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[17].display_name | Geology |
| concepts[18].id | https://openalex.org/C165205528 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[18].display_name | Seismology |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C168110828 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1331626 |
| concepts[22].display_name | Spectral density |
| concepts[23].id | https://openalex.org/C76155785 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[23].display_name | Telecommunications |
| concepts[24].id | https://openalex.org/C121332964 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[24].display_name | Physics |
| concepts[25].id | https://openalex.org/C119599485 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[25].display_name | Electrical engineering |
| concepts[26].id | https://openalex.org/C107038049 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q35986 |
| concepts[26].display_name | Aesthetics |
| concepts[27].id | https://openalex.org/C105795698 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[27].display_name | Statistics |
| concepts[28].id | https://openalex.org/C138885662 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[28].display_name | Philosophy |
| concepts[29].id | https://openalex.org/C115961682 |
| concepts[29].level | 2 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[29].display_name | Image (mathematics) |
| concepts[30].id | https://openalex.org/C111919701 |
| concepts[30].level | 1 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[30].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/downtime |
| keywords[0].score | 0.7975744009017944 |
| keywords[0].display_name | Downtime |
| keywords[1].id | https://openalex.org/keywords/bispectrum |
| keywords[1].score | 0.6140480041503906 |
| keywords[1].display_name | Bispectrum |
| keywords[2].id | https://openalex.org/keywords/engineering |
| keywords[2].score | 0.5923140645027161 |
| keywords[2].display_name | Engineering |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.585974395275116 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/condition-monitoring |
| keywords[4].score | 0.5849988460540771 |
| keywords[4].display_name | Condition monitoring |
| keywords[5].id | https://openalex.org/keywords/kurtosis |
| keywords[5].score | 0.5602446794509888 |
| keywords[5].display_name | Kurtosis |
| keywords[6].id | https://openalex.org/keywords/prognostics |
| keywords[6].score | 0.5520169138908386 |
| keywords[6].display_name | Prognostics |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.539238452911377 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/vibration |
| keywords[8].score | 0.5332581400871277 |
| keywords[8].display_name | Vibration |
| keywords[9].id | https://openalex.org/keywords/modulation |
| keywords[9].score | 0.5032896399497986 |
| keywords[9].display_name | Modulation (music) |
| keywords[10].id | https://openalex.org/keywords/process |
| keywords[10].score | 0.4697727560997009 |
| keywords[10].display_name | Process (computing) |
| keywords[11].id | https://openalex.org/keywords/fault |
| keywords[11].score | 0.4563172459602356 |
| keywords[11].display_name | Fault (geology) |
| keywords[12].id | https://openalex.org/keywords/reliability-engineering |
| keywords[12].score | 0.4528539776802063 |
| keywords[12].display_name | Reliability engineering |
| keywords[13].id | https://openalex.org/keywords/support-vector-machine |
| keywords[13].score | 0.42823293805122375 |
| keywords[13].display_name | Support vector machine |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.37069690227508545 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/automotive-engineering |
| keywords[15].score | 0.3216322660446167 |
| keywords[15].display_name | Automotive engineering |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.21902266144752502 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/jsen.2022.3145194 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S189694085 |
| locations[0].source.issn | 1530-437X, 1558-1748 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1530-437X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Sensors Journal |
| locations[0].source.host_organization | https://openalex.org/P4310321027 |
| locations[0].source.host_organization_name | IEEE Sensors Council |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321027, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Sensors Council, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Sensors Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jsen.2022.3145194 |
| locations[1].id | pmh:oai:pure.atira.dk:publications/1c5571b9-11b8-441e-b528-a26cccf4ee03 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Han, Y, Xu, M, Sun, X, Ding, X, Chen, X & Gu, F 2022, 'Gear Health Monitoring and RUL Prediction Based on MSB Analysis', IEEE Sensors Journal, vol. 22, no. 5, 9687558, pp. 4400-4409. https://doi.org/10.1109/JSEN.2022.3145194 |
| locations[1].landing_page_url | http://www.scopus.com/inward/record.url?scp=85123687848&partnerID=8YFLogxK |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5041699836 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3022-7743 |
| authorships[0].author.display_name | Yaoyao Han |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[0].institutions[0].id | https://openalex.org/I158842170 |
| authorships[0].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yaoyao Han |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[1].author.id | https://openalex.org/A5031876732 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1161-218X |
| authorships[1].author.display_name | Minmin Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[1].institutions[0].id | https://openalex.org/I158842170 |
| authorships[1].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minmin Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[2].author.id | https://openalex.org/A5063661212 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7724-719X |
| authorships[2].author.display_name | Xiuquan Sun |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, U.K. |
| authorships[2].institutions[0].id | https://openalex.org/I133837150 |
| authorships[2].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Huddersfield |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiuquan Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, U.K. |
| authorships[3].author.id | https://openalex.org/A5034422878 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5321-0894 |
| authorships[3].author.display_name | Xiaoxi Ding |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[3].institutions[0].id | https://openalex.org/I158842170 |
| authorships[3].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoxi Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[4].author.id | https://openalex.org/A5100373745 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9797-8384 |
| authorships[4].author.display_name | Xiaohong Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[4].institutions[0].id | https://openalex.org/I158842170 |
| authorships[4].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chongqing University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaohui Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China |
| authorships[5].author.id | https://openalex.org/A5077515483 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4907-525X |
| authorships[5].author.display_name | Fengshou Gu |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[5].affiliations[0].raw_affiliation_string | Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, U.K. |
| authorships[5].institutions[0].id | https://openalex.org/I133837150 |
| authorships[5].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Huddersfield |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fengshou Gu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, U.K. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.scopus.com/inward/record.url?scp=85123687848&partnerID=8YFLogxK |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gear Health Monitoring and RUL Prediction Based on MSB Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W1557405600, https://openalex.org/W1601861909, https://openalex.org/W3114992894, https://openalex.org/W2037411704, https://openalex.org/W2908973203, https://openalex.org/W2801712269, https://openalex.org/W2945934818, https://openalex.org/W2897395669, https://openalex.org/W1872896676, https://openalex.org/W2156691445 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pure.atira.dk:publications/1c5571b9-11b8-441e-b528-a26cccf4ee03 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400216 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Portal (King's College London) |
| best_oa_location.source.host_organization | https://openalex.org/I183935753 |
| best_oa_location.source.host_organization_name | King's College London |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I183935753 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Han, Y, Xu, M, Sun, X, Ding, X, Chen, X & Gu, F 2022, 'Gear Health Monitoring and RUL Prediction Based on MSB Analysis', IEEE Sensors Journal, vol. 22, no. 5, 9687558, pp. 4400-4409. https://doi.org/10.1109/JSEN.2022.3145194 |
| best_oa_location.landing_page_url | http://www.scopus.com/inward/record.url?scp=85123687848&partnerID=8YFLogxK |
| primary_location.id | doi:10.1109/jsen.2022.3145194 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S189694085 |
| primary_location.source.issn | 1530-437X, 1558-1748 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1530-437X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Sensors Journal |
| primary_location.source.host_organization | https://openalex.org/P4310321027 |
| primary_location.source.host_organization_name | IEEE Sensors Council |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321027, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Sensors Council, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Sensors Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jsen.2022.3145194 |
| publication_date | 2022-01-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2902314020, https://openalex.org/W2735326783, https://openalex.org/W3191459329, https://openalex.org/W2996117967, https://openalex.org/W2768148617, https://openalex.org/W2810292802, https://openalex.org/W2051319254, https://openalex.org/W3037511795, https://openalex.org/W2994902374, https://openalex.org/W2789318881, https://openalex.org/W2115431794, https://openalex.org/W2819539323, https://openalex.org/W3048446182, https://openalex.org/W3048523154, https://openalex.org/W2594535340, https://openalex.org/W2593875641, https://openalex.org/W2064549102, https://openalex.org/W1985250070, https://openalex.org/W2035643128, https://openalex.org/W2787936017, https://openalex.org/W2981680696, https://openalex.org/W1974528911, https://openalex.org/W3005302330, https://openalex.org/W3004395473, https://openalex.org/W2955033741, https://openalex.org/W3096022091, https://openalex.org/W3120631277, https://openalex.org/W3197729315, https://openalex.org/W2576071426 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 2, 123 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.in | 5, 156 |
| abstract_inverted_index.is | 1, 91, 113, 127 |
| abstract_inverted_index.of | 48, 56, 104, 119, 172 |
| abstract_inverted_index.on | 10, 45, 52, 81, 146, 168 |
| abstract_inverted_index.so | 189 |
| abstract_inverted_index.to | 14, 68, 93, 115, 129, 154 |
| abstract_inverted_index.MSB | 134, 142, 161 |
| abstract_inverted_index.RUL | 41, 120, 137, 182, 201 |
| abstract_inverted_index.The | 159 |
| abstract_inverted_index.and | 8, 16, 22, 77, 99, 148, 175, 188, 196, 203 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.due | 153 |
| abstract_inverted_index.for | 33, 136, 180, 199 |
| abstract_inverted_index.its | 59 |
| abstract_inverted_index.key | 3 |
| abstract_inverted_index.on. | 190 |
| abstract_inverted_index.rig | 126 |
| abstract_inverted_index.the | 40, 46, 49, 54, 70, 95, 101, 117, 131, 133, 150, 170, 173 |
| abstract_inverted_index.RMS, | 186 |
| abstract_inverted_index.fail | 67 |
| abstract_inverted_index.gear | 157, 174, 181, 200 |
| abstract_inverted_index.have | 176 |
| abstract_inverted_index.hold | 78 |
| abstract_inverted_index.lead | 13 |
| abstract_inverted_index.life | 25 |
| abstract_inverted_index.more | 194 |
| abstract_inverted_index.most | 62 |
| abstract_inverted_index.poor | 79 |
| abstract_inverted_index.show | 140, 165 |
| abstract_inverted_index.some | 38 |
| abstract_inverted_index.test | 125 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.time | 32 |
| abstract_inverted_index.used | 65 |
| abstract_inverted_index.weak | 151 |
| abstract_inverted_index.will | 12 |
| abstract_inverted_index.with | 185 |
| abstract_inverted_index.(MSB) | 90 |
| abstract_inverted_index.(RUL) | 26 |
| abstract_inverted_index.Last, | 122 |
| abstract_inverted_index.Then, | 106 |
| abstract_inverted_index.These | 191 |
| abstract_inverted_index.after | 163 |
| abstract_inverted_index.fault | 71 |
| abstract_inverted_index.gears | 11, 57 |
| abstract_inverted_index.noise | 82 |
| abstract_inverted_index.Health | 19 |
| abstract_inverted_index.behind | 74 |
| abstract_inverted_index.better | 144, 166 |
| abstract_inverted_index.during | 58 |
| abstract_inverted_index.faults | 9 |
| abstract_inverted_index.gears. | 105 |
| abstract_inverted_index.health | 102 |
| abstract_inverted_index.hidden | 73 |
| abstract_inverted_index.higher | 177 |
| abstract_inverted_index.paper, | 86 |
| abstract_inverted_index.relies | 44 |
| abstract_inverted_index.reveal | 69, 94 |
| abstract_inverted_index.signal | 76, 88, 96 |
| abstract_inverted_index.timely | 35 |
| abstract_inverted_index.useful | 24, 195 |
| abstract_inverted_index.vector | 110 |
| abstract_inverted_index.verify | 130 |
| abstract_inverted_index.(IMRVM) | 112 |
| abstract_inverted_index.Gearbox | 0 |
| abstract_inverted_index.Results | 139 |
| abstract_inverted_index.current | 63 |
| abstract_inverted_index.degree, | 39 |
| abstract_inverted_index.gearbox | 34, 204 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.machine | 111 |
| abstract_inverted_index.monitor | 100 |
| abstract_inverted_index.optimal | 160 |
| abstract_inverted_index.process | 118 |
| abstract_inverted_index.provide | 29 |
| abstract_inverted_index.realize | 116 |
| abstract_inverted_index.system. | 158 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.accuracy | 43, 179 |
| abstract_inverted_index.commonly | 64 |
| abstract_inverted_index.designed | 128 |
| abstract_inverted_index.features | 51, 66, 135, 162 |
| abstract_inverted_index.findings | 192 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.kurtosis | 187 |
| abstract_inverted_index.proposed | 92 |
| abstract_inverted_index.provided | 193 |
| abstract_inverted_index.capturing | 149 |
| abstract_inverted_index.comparing | 184 |
| abstract_inverted_index.component | 4 |
| abstract_inverted_index.condition | 20, 103 |
| abstract_inverted_index.denoising | 147 |
| abstract_inverted_index.downtime. | 18 |
| abstract_inverted_index.lifetime. | 60 |
| abstract_inverted_index.mechanism | 72, 98 |
| abstract_inverted_index.possesses | 143 |
| abstract_inverted_index.practical | 197 |
| abstract_inverted_index.relevance | 109 |
| abstract_inverted_index.remaining | 23 |
| abstract_inverted_index.selection | 164 |
| abstract_inverted_index.variation | 152 |
| abstract_inverted_index.vibration | 75 |
| abstract_inverted_index.bispectrum | 89 |
| abstract_inverted_index.breakdowns | 15 |
| abstract_inverted_index.capability | 80 |
| abstract_inverted_index.diagnostic | 50 |
| abstract_inverted_index.introduced | 114 |
| abstract_inverted_index.mechanical | 6 |
| abstract_inverted_index.modulation | 87, 97, 155 |
| abstract_inverted_index.monitoring | 21 |
| abstract_inverted_index.prediction | 27, 42, 178, 183, 202 |
| abstract_inverted_index.reflecting | 53, 169 |
| abstract_inverted_index.sufficient | 30 |
| abstract_inverted_index.degradation | 55, 171 |
| abstract_inverted_index.information | 198 |
| abstract_inverted_index.performance | 47, 145, 167 |
| abstract_inverted_index.prediction. | 121, 138 |
| abstract_inverted_index.unscheduled | 17 |
| abstract_inverted_index.maintenance. | 36, 205 |
| abstract_inverted_index.transmission | 7 |
| abstract_inverted_index.cancellation. | 83 |
| abstract_inverted_index.effectiveness | 132 |
| abstract_inverted_index.run-to-failure | 124 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.92350372 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |