Generalizable morphological profiling of cells by interpretable unsupervised learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41467-025-66267-w
The intersection of advanced microscopy and machine learning is transforming cell biology into a quantitative, data-driven field. Traditional cell profiling depends on manual feature extraction, which is labor-intensive and prone to bias, while deep learning provides alternatives but faces challenges with interpretability and reliance on labeled data. We present MorphoGenie, an unsupervised deep-learning framework for single-cell morphological profiling. By combining disentangled representation learning with high-fidelity image reconstruction, MorphoGenie creates a compact, interpretable latent space that captures biologically meaningful features without annotation, overcoming the "curse of dimensionality." Unlike previous models, it systematically links latent representations to hierarchical morphological attributes, ensuring semantic and biological interpretability. It also supports combinatorial generalization, enabling robust performance across diverse imaging modalities (e.g., fluorescence, quantitative phase imaging) and experimental conditions, from discrete cell type/state classification to continuous trajectory inference. This provides a generalized, unbiased strategy for morphological profiling, revealing cellular behaviors often overlooked by expert visual examination.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41467-025-66267-w
- https://www.nature.com/articles/s41467-025-66267-w_reference.pdf
- OA Status
- gold
- References
- 44
- OpenAlex ID
- https://openalex.org/W4417233272
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417233272Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41467-025-66267-wDigital Object Identifier
- Title
-
Generalizable morphological profiling of cells by interpretable unsupervised learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Rashmi Sreeramachandra Murthy, Shobana V. Stassen, Dickson M. D. Siu, Michelle C. K. Lo, Gwinky G. K. Yip, Kevin K. TsiaList of authors in order
- Landing page
-
https://doi.org/10.1038/s41467-025-66267-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41467-025-66267-w_reference.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41467-025-66267-w_reference.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417233272 |
|---|---|
| doi | https://doi.org/10.1038/s41467-025-66267-w |
| ids.doi | https://doi.org/10.1038/s41467-025-66267-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41381503 |
| ids.openalex | https://openalex.org/W4417233272 |
| fwci | |
| type | article |
| title | Generalizable morphological profiling of cells by interpretable unsupervised learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 3920 |
| apc_list.currency | GBP |
| apc_list.value_usd | 4808 |
| apc_paid.value | 3920 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 4808 |
| language | en |
| locations[0].id | doi:10.1038/s41467-025-66267-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S64187185 |
| locations[0].source.issn | 2041-1723 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2041-1723 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nature Communications |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41467-025-66267-w_reference.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nature Communications |
| locations[0].landing_page_url | https://doi.org/10.1038/s41467-025-66267-w |
| locations[1].id | pmid:41381503 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nature communications |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41381503 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5082060165 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Rashmi Sreeramachandra Murthy |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[0].institutions[0].id | https://openalex.org/I889458895 |
| authorships[0].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rashmi Sreeramachandra Murthy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[1].author.id | https://openalex.org/A5007733163 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3506-6395 |
| authorships[1].author.display_name | Shobana V. Stassen |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[1].institutions[0].id | https://openalex.org/I889458895 |
| authorships[1].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shobana V. Stassen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[2].author.id | https://openalex.org/A5020378333 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1598-7253 |
| authorships[2].author.display_name | Dickson M. D. Siu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[2].institutions[0].id | https://openalex.org/I889458895 |
| authorships[2].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | University of Hong Kong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dickson M. D. Siu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[3].author.id | https://openalex.org/A5050166272 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4452-5525 |
| authorships[3].author.display_name | Michelle C. K. Lo |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[3].institutions[0].id | https://openalex.org/I889458895 |
| authorships[3].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | University of Hong Kong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michelle C. K. Lo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[4].author.id | https://openalex.org/A5039910492 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8464-9824 |
| authorships[4].author.display_name | Gwinky G. K. Yip |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[4].institutions[0].id | https://openalex.org/I889458895 |
| authorships[4].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gwinky G. K. Yip |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[5].author.id | https://openalex.org/A5005454460 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6394-9657 |
| authorships[5].author.display_name | Kevin K. Tsia |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210152695 |
| authorships[5].affiliations[1].raw_affiliation_string | Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong |
| authorships[5].institutions[0].id | https://openalex.org/I4210152695 |
| authorships[5].institutions[0].ror | https://ror.org/05m0z0h30 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210152695 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | Nano and Advanced Materials Institute |
| authorships[5].institutions[1].id | https://openalex.org/I889458895 |
| authorships[5].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[5].institutions[1].country_code | HK |
| authorships[5].institutions[1].display_name | University of Hong Kong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kevin K. Tsia |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41467-025-66267-w_reference.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Generalizable morphological profiling of cells by interpretable unsupervised learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:16:27.785689 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1038/s41467-025-66267-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S64187185 |
| best_oa_location.source.issn | 2041-1723 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2041-1723 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nature Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41467-025-66267-w_reference.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nature Communications |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41467-025-66267-w |
| primary_location.id | doi:10.1038/s41467-025-66267-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S64187185 |
| primary_location.source.issn | 2041-1723 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2041-1723 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nature Communications |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41467-025-66267-w_reference.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nature Communications |
| primary_location.landing_page_url | https://doi.org/10.1038/s41467-025-66267-w |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2019062120, https://openalex.org/W2641905542, https://openalex.org/W4221117452, https://openalex.org/W4313545069, https://openalex.org/W4307725221, https://openalex.org/W3164615498, https://openalex.org/W4399128715, https://openalex.org/W2107554012, https://openalex.org/W3154036072, https://openalex.org/W2509141893, https://openalex.org/W3000716014, https://openalex.org/W2958089299, https://openalex.org/W4225821407, https://openalex.org/W3025758200, https://openalex.org/W4287510106, https://openalex.org/W2807692250, https://openalex.org/W2786897815, https://openalex.org/W2964057425, https://openalex.org/W4224902996, https://openalex.org/W4293568373, https://openalex.org/W4295112158, https://openalex.org/W2964127395, https://openalex.org/W3113917069, https://openalex.org/W3035399978, https://openalex.org/W3016840787, https://openalex.org/W4211233744, https://openalex.org/W3083579634, https://openalex.org/W4401647798, https://openalex.org/W3002077664, https://openalex.org/W3200101063, https://openalex.org/W3176643142, https://openalex.org/W3191373123, https://openalex.org/W2087252982, https://openalex.org/W2907968261, https://openalex.org/W3111521801, https://openalex.org/W4366828026, https://openalex.org/W2912915283, https://openalex.org/W2976723666, https://openalex.org/W3189066069, https://openalex.org/W4401905198, https://openalex.org/W4399575357, https://openalex.org/W2144963196, https://openalex.org/W3196890347, https://openalex.org/W7102803208 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 13, 69, 134 |
| abstract_inverted_index.By | 58 |
| abstract_inverted_index.It | 103 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.is | 8, 26 |
| abstract_inverted_index.it | 89 |
| abstract_inverted_index.of | 2, 84 |
| abstract_inverted_index.on | 21, 44 |
| abstract_inverted_index.to | 30, 94, 128 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 5, 28, 42, 100, 120 |
| abstract_inverted_index.but | 37 |
| abstract_inverted_index.for | 54, 138 |
| abstract_inverted_index.the | 82 |
| abstract_inverted_index.This | 132 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.cell | 10, 18, 125 |
| abstract_inverted_index.deep | 33 |
| abstract_inverted_index.from | 123 |
| abstract_inverted_index.into | 12 |
| abstract_inverted_index.that | 74 |
| abstract_inverted_index.with | 40, 63 |
| abstract_inverted_index.bias, | 31 |
| abstract_inverted_index.data. | 46 |
| abstract_inverted_index.faces | 38 |
| abstract_inverted_index.image | 65 |
| abstract_inverted_index.links | 91 |
| abstract_inverted_index.often | 144 |
| abstract_inverted_index.phase | 118 |
| abstract_inverted_index.prone | 29 |
| abstract_inverted_index.space | 73 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.while | 32 |
| abstract_inverted_index."curse | 83 |
| abstract_inverted_index.(e.g., | 115 |
| abstract_inverted_index.Unlike | 86 |
| abstract_inverted_index.across | 111 |
| abstract_inverted_index.expert | 147 |
| abstract_inverted_index.field. | 16 |
| abstract_inverted_index.latent | 72, 92 |
| abstract_inverted_index.manual | 22 |
| abstract_inverted_index.robust | 109 |
| abstract_inverted_index.visual | 148 |
| abstract_inverted_index.biology | 11 |
| abstract_inverted_index.creates | 68 |
| abstract_inverted_index.depends | 20 |
| abstract_inverted_index.diverse | 112 |
| abstract_inverted_index.feature | 23 |
| abstract_inverted_index.imaging | 113 |
| abstract_inverted_index.labeled | 45 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.models, | 88 |
| abstract_inverted_index.present | 48 |
| abstract_inverted_index.without | 79 |
| abstract_inverted_index.advanced | 3 |
| abstract_inverted_index.captures | 75 |
| abstract_inverted_index.cellular | 142 |
| abstract_inverted_index.compact, | 70 |
| abstract_inverted_index.discrete | 124 |
| abstract_inverted_index.enabling | 108 |
| abstract_inverted_index.ensuring | 98 |
| abstract_inverted_index.features | 78 |
| abstract_inverted_index.imaging) | 119 |
| abstract_inverted_index.learning | 7, 34, 62 |
| abstract_inverted_index.previous | 87 |
| abstract_inverted_index.provides | 35, 133 |
| abstract_inverted_index.reliance | 43 |
| abstract_inverted_index.semantic | 99 |
| abstract_inverted_index.strategy | 137 |
| abstract_inverted_index.supports | 105 |
| abstract_inverted_index.unbiased | 136 |
| abstract_inverted_index.behaviors | 143 |
| abstract_inverted_index.combining | 59 |
| abstract_inverted_index.framework | 53 |
| abstract_inverted_index.profiling | 19 |
| abstract_inverted_index.revealing | 141 |
| abstract_inverted_index.biological | 101 |
| abstract_inverted_index.challenges | 39 |
| abstract_inverted_index.continuous | 129 |
| abstract_inverted_index.inference. | 131 |
| abstract_inverted_index.meaningful | 77 |
| abstract_inverted_index.microscopy | 4 |
| abstract_inverted_index.modalities | 114 |
| abstract_inverted_index.overcoming | 81 |
| abstract_inverted_index.overlooked | 145 |
| abstract_inverted_index.profiling, | 140 |
| abstract_inverted_index.profiling. | 57 |
| abstract_inverted_index.trajectory | 130 |
| abstract_inverted_index.type/state | 126 |
| abstract_inverted_index.MorphoGenie | 67 |
| abstract_inverted_index.Traditional | 17 |
| abstract_inverted_index.annotation, | 80 |
| abstract_inverted_index.attributes, | 97 |
| abstract_inverted_index.conditions, | 122 |
| abstract_inverted_index.data-driven | 15 |
| abstract_inverted_index.extraction, | 24 |
| abstract_inverted_index.performance | 110 |
| abstract_inverted_index.single-cell | 55 |
| abstract_inverted_index.MorphoGenie, | 49 |
| abstract_inverted_index.alternatives | 36 |
| abstract_inverted_index.biologically | 76 |
| abstract_inverted_index.disentangled | 60 |
| abstract_inverted_index.examination. | 149 |
| abstract_inverted_index.experimental | 121 |
| abstract_inverted_index.generalized, | 135 |
| abstract_inverted_index.hierarchical | 95 |
| abstract_inverted_index.intersection | 1 |
| abstract_inverted_index.quantitative | 117 |
| abstract_inverted_index.transforming | 9 |
| abstract_inverted_index.unsupervised | 51 |
| abstract_inverted_index.combinatorial | 106 |
| abstract_inverted_index.deep-learning | 52 |
| abstract_inverted_index.fluorescence, | 116 |
| abstract_inverted_index.high-fidelity | 64 |
| abstract_inverted_index.interpretable | 71 |
| abstract_inverted_index.morphological | 56, 96, 139 |
| abstract_inverted_index.quantitative, | 14 |
| abstract_inverted_index.classification | 127 |
| abstract_inverted_index.representation | 61 |
| abstract_inverted_index.systematically | 90 |
| abstract_inverted_index.generalization, | 107 |
| abstract_inverted_index.labor-intensive | 27 |
| abstract_inverted_index.reconstruction, | 66 |
| abstract_inverted_index.representations | 93 |
| abstract_inverted_index.dimensionality." | 85 |
| abstract_inverted_index.interpretability | 41 |
| abstract_inverted_index.interpretability. | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |