Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.13049
We study a matrix completion problem where both the ground truth $R$ matrix and the unknown sampling distribution $P$ over observed entries are low-rank matrices, and \textit{share a common subspace}. We assume that a large amount $M$ of \textit{unlabeled} data drawn from the sampling distribution $P$ is available, together with a small amount $N$ of labeled data drawn from the same distribution and noisy estimates of the corresponding ground truth entries. This setting is inspired by recommender systems scenarios where the unlabeled data corresponds to `implicit feedback' (consisting in interactions such as purchase, click, etc. ) and the labeled data corresponds to the `explicit feedback', consisting of interactions where the user has given an explicit rating to the item. Leveraging powerful results from the theory of low-rank subspace recovery, together with classic generalization bounds for matrix completion models, we show error bounds consisting of a sum of two error terms scaling as $\widetilde{O}\left(\sqrt{\frac{nd}{M}}\right)$ and $\widetilde{O}\left(\sqrt{\frac{dr}{N}}\right)$ respectively, where $d$ is the rank of $P$ and $r$ is the rank of $M$. In synthetic experiments, we confirm that the true generalization error naturally splits into independent error terms corresponding to the estimations of $P$ and and the ground truth matrix $\ground$ respectively. In real-life experiments on Douban and MovieLens with most explicit ratings removed, we demonstrate that the method can outperform baselines relying only on the explicit ratings, demonstrating that our assumptions provide a valid toy theoretical setting to study the interaction between explicit and implicit feedbacks in recommender systems.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.13049
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106014889
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106014889Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.13049Digital Object Identifier
- Title
-
Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side InformationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-17Full publication date if available
- Authors
-
Ledent, Antoine, Soo Mun Chong, Hieu, Nong MinhList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.13049Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.13049Direct OA link when available
- Concepts
-
MovieLens, Generalization, Matrix completion, Rank (graph theory), Matrix (chemical analysis), Subspace topology, Scaling, Computer science, Recommender system, Algorithm, Distribution (mathematics), Sampling (signal processing), Synthetic data, Ground truth, Mathematics, Low-rank approximation, Upper and lower bounds, Sparse matrix, Matrix decomposition, Data Matrix, Mathematical optimization, Applied mathematics, Collaborative filtering, Discrete mathematics, Orthogonality, Probability distributionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106014889 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.13049 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.13049 |
| ids.openalex | https://openalex.org/W7106014889 |
| fwci | 0.0 |
| type | preprint |
| title | Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776156558 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7660486698150635 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4353746 |
| concepts[0].display_name | MovieLens |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7274916768074036 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C2778459887 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5945414900779724 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6787865 |
| concepts[2].display_name | Matrix completion |
| concepts[3].id | https://openalex.org/C164226766 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5636281967163086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[3].display_name | Rank (graph theory) |
| concepts[4].id | https://openalex.org/C106487976 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5516070127487183 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[4].display_name | Matrix (chemical analysis) |
| concepts[5].id | https://openalex.org/C32834561 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5025466084480286 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[5].display_name | Subspace topology |
| concepts[6].id | https://openalex.org/C99844830 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4884752333164215 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[6].display_name | Scaling |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.48246636986732483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C557471498 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4606020152568817 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[8].display_name | Recommender system |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45027485489845276 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C110121322 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43522998690605164 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[10].display_name | Distribution (mathematics) |
| concepts[11].id | https://openalex.org/C140779682 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4347189962863922 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[11].display_name | Sampling (signal processing) |
| concepts[12].id | https://openalex.org/C160920958 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43349549174308777 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[12].display_name | Synthetic data |
| concepts[13].id | https://openalex.org/C146849305 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4301527142524719 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[13].display_name | Ground truth |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.4230063855648041 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C90199385 |
| concepts[15].level | 3 |
| concepts[15].score | 0.35651347041130066 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q6692777 |
| concepts[15].display_name | Low-rank approximation |
| concepts[16].id | https://openalex.org/C77553402 |
| concepts[16].level | 2 |
| concepts[16].score | 0.32432153820991516 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[16].display_name | Upper and lower bounds |
| concepts[17].id | https://openalex.org/C56372850 |
| concepts[17].level | 3 |
| concepts[17].score | 0.32091501355171204 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[17].display_name | Sparse matrix |
| concepts[18].id | https://openalex.org/C42355184 |
| concepts[18].level | 3 |
| concepts[18].score | 0.30425283312797546 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[18].display_name | Matrix decomposition |
| concepts[19].id | https://openalex.org/C2780985081 |
| concepts[19].level | 5 |
| concepts[19].score | 0.28740525245666504 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q676502 |
| concepts[19].display_name | Data Matrix |
| concepts[20].id | https://openalex.org/C126255220 |
| concepts[20].level | 1 |
| concepts[20].score | 0.2723381519317627 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[20].display_name | Mathematical optimization |
| concepts[21].id | https://openalex.org/C28826006 |
| concepts[21].level | 1 |
| concepts[21].score | 0.2699127793312073 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[21].display_name | Applied mathematics |
| concepts[22].id | https://openalex.org/C21569690 |
| concepts[22].level | 3 |
| concepts[22].score | 0.26822054386138916 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q94702 |
| concepts[22].display_name | Collaborative filtering |
| concepts[23].id | https://openalex.org/C118615104 |
| concepts[23].level | 1 |
| concepts[23].score | 0.2593591809272766 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[23].display_name | Discrete mathematics |
| concepts[24].id | https://openalex.org/C17137986 |
| concepts[24].level | 2 |
| concepts[24].score | 0.25706946849823 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q215067 |
| concepts[24].display_name | Orthogonality |
| concepts[25].id | https://openalex.org/C149441793 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25110918283462524 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[25].display_name | Probability distribution |
| keywords[0].id | https://openalex.org/keywords/movielens |
| keywords[0].score | 0.7660486698150635 |
| keywords[0].display_name | MovieLens |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.7274916768074036 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/matrix-completion |
| keywords[2].score | 0.5945414900779724 |
| keywords[2].display_name | Matrix completion |
| keywords[3].id | https://openalex.org/keywords/rank |
| keywords[3].score | 0.5636281967163086 |
| keywords[3].display_name | Rank (graph theory) |
| keywords[4].id | https://openalex.org/keywords/matrix |
| keywords[4].score | 0.5516070127487183 |
| keywords[4].display_name | Matrix (chemical analysis) |
| keywords[5].id | https://openalex.org/keywords/subspace-topology |
| keywords[5].score | 0.5025466084480286 |
| keywords[5].display_name | Subspace topology |
| keywords[6].id | https://openalex.org/keywords/scaling |
| keywords[6].score | 0.4884752333164215 |
| keywords[6].display_name | Scaling |
| keywords[7].id | https://openalex.org/keywords/recommender-system |
| keywords[7].score | 0.4606020152568817 |
| keywords[7].display_name | Recommender system |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.13049 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.13049 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A4228070518 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ledent, Antoine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ledent, Antoine |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4283936207 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-2686-8496 |
| authorships[1].author.display_name | Soo Mun Chong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Soo, Mun Chong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hieu, Nong Minh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hieu, Nong Minh |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.13049 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:39:43.309859 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.13049 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.13049 |
| primary_location.id | doi:10.48550/arxiv.2511.13049 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.13049 |
| publication_date | 2025-11-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.) | 95 |
| abstract_inverted_index.a | 2, 27, 33, 50, 144, 231 |
| abstract_inverted_index.In | 170, 200 |
| abstract_inverted_index.We | 0, 30 |
| abstract_inverted_index.an | 113 |
| abstract_inverted_index.as | 91, 151 |
| abstract_inverted_index.by | 75 |
| abstract_inverted_index.in | 88, 245 |
| abstract_inverted_index.is | 46, 73, 158, 165 |
| abstract_inverted_index.of | 37, 54, 65, 106, 125, 143, 146, 161, 168, 190 |
| abstract_inverted_index.on | 203, 222 |
| abstract_inverted_index.to | 84, 101, 116, 187, 236 |
| abstract_inverted_index.we | 138, 173, 212 |
| abstract_inverted_index.$M$ | 36 |
| abstract_inverted_index.$N$ | 53 |
| abstract_inverted_index.$P$ | 18, 45, 162, 191 |
| abstract_inverted_index.$R$ | 11 |
| abstract_inverted_index.$d$ | 157 |
| abstract_inverted_index.$r$ | 164 |
| abstract_inverted_index.and | 13, 25, 62, 96, 153, 163, 192, 193, 205, 242 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.can | 217 |
| abstract_inverted_index.for | 134 |
| abstract_inverted_index.has | 111 |
| abstract_inverted_index.our | 228 |
| abstract_inverted_index.sum | 145 |
| abstract_inverted_index.the | 8, 14, 42, 59, 66, 80, 97, 102, 109, 117, 123, 159, 166, 176, 188, 194, 215, 223, 238 |
| abstract_inverted_index.toy | 233 |
| abstract_inverted_index.two | 147 |
| abstract_inverted_index.$M$. | 169 |
| abstract_inverted_index.This | 71 |
| abstract_inverted_index.both | 7 |
| abstract_inverted_index.data | 39, 56, 82, 99 |
| abstract_inverted_index.etc. | 94 |
| abstract_inverted_index.from | 41, 58, 122 |
| abstract_inverted_index.into | 182 |
| abstract_inverted_index.most | 208 |
| abstract_inverted_index.only | 221 |
| abstract_inverted_index.over | 19 |
| abstract_inverted_index.rank | 160, 167 |
| abstract_inverted_index.same | 60 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.such | 90 |
| abstract_inverted_index.that | 32, 175, 214, 227 |
| abstract_inverted_index.true | 177 |
| abstract_inverted_index.user | 110 |
| abstract_inverted_index.with | 49, 130, 207 |
| abstract_inverted_index.drawn | 40, 57 |
| abstract_inverted_index.error | 140, 148, 179, 184 |
| abstract_inverted_index.given | 112 |
| abstract_inverted_index.item. | 118 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.noisy | 63 |
| abstract_inverted_index.small | 51 |
| abstract_inverted_index.study | 1, 237 |
| abstract_inverted_index.terms | 149, 185 |
| abstract_inverted_index.truth | 10, 69, 196 |
| abstract_inverted_index.valid | 232 |
| abstract_inverted_index.where | 6, 79, 108, 156 |
| abstract_inverted_index.Douban | 204 |
| abstract_inverted_index.amount | 35, 52 |
| abstract_inverted_index.assume | 31 |
| abstract_inverted_index.bounds | 133, 141 |
| abstract_inverted_index.click, | 93 |
| abstract_inverted_index.common | 28 |
| abstract_inverted_index.ground | 9, 68, 195 |
| abstract_inverted_index.matrix | 3, 12, 135, 197 |
| abstract_inverted_index.method | 216 |
| abstract_inverted_index.rating | 115 |
| abstract_inverted_index.splits | 181 |
| abstract_inverted_index.theory | 124 |
| abstract_inverted_index.between | 240 |
| abstract_inverted_index.classic | 131 |
| abstract_inverted_index.confirm | 174 |
| abstract_inverted_index.entries | 21 |
| abstract_inverted_index.labeled | 55, 98 |
| abstract_inverted_index.models, | 137 |
| abstract_inverted_index.problem | 5 |
| abstract_inverted_index.provide | 230 |
| abstract_inverted_index.ratings | 210 |
| abstract_inverted_index.relying | 220 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.scaling | 150 |
| abstract_inverted_index.setting | 72, 235 |
| abstract_inverted_index.systems | 77 |
| abstract_inverted_index.unknown | 15 |
| abstract_inverted_index.entries. | 70 |
| abstract_inverted_index.explicit | 114, 209, 224, 241 |
| abstract_inverted_index.implicit | 243 |
| abstract_inverted_index.inspired | 74 |
| abstract_inverted_index.low-rank | 23, 126 |
| abstract_inverted_index.observed | 20 |
| abstract_inverted_index.powerful | 120 |
| abstract_inverted_index.ratings, | 225 |
| abstract_inverted_index.removed, | 211 |
| abstract_inverted_index.sampling | 16, 43 |
| abstract_inverted_index.subspace | 127 |
| abstract_inverted_index.systems. | 247 |
| abstract_inverted_index.together | 48, 129 |
| abstract_inverted_index.$\ground$ | 198 |
| abstract_inverted_index.MovieLens | 206 |
| abstract_inverted_index.`explicit | 103 |
| abstract_inverted_index.`implicit | 85 |
| abstract_inverted_index.baselines | 219 |
| abstract_inverted_index.estimates | 64 |
| abstract_inverted_index.feedback' | 86 |
| abstract_inverted_index.feedbacks | 244 |
| abstract_inverted_index.matrices, | 24 |
| abstract_inverted_index.naturally | 180 |
| abstract_inverted_index.purchase, | 92 |
| abstract_inverted_index.real-life | 201 |
| abstract_inverted_index.recovery, | 128 |
| abstract_inverted_index.scenarios | 78 |
| abstract_inverted_index.synthetic | 171 |
| abstract_inverted_index.unlabeled | 81 |
| abstract_inverted_index.Leveraging | 119 |
| abstract_inverted_index.available, | 47 |
| abstract_inverted_index.completion | 4, 136 |
| abstract_inverted_index.consisting | 105, 142 |
| abstract_inverted_index.feedback', | 104 |
| abstract_inverted_index.outperform | 218 |
| abstract_inverted_index.subspace}. | 29 |
| abstract_inverted_index.(consisting | 87 |
| abstract_inverted_index.assumptions | 229 |
| abstract_inverted_index.corresponds | 83, 100 |
| abstract_inverted_index.demonstrate | 213 |
| abstract_inverted_index.estimations | 189 |
| abstract_inverted_index.experiments | 202 |
| abstract_inverted_index.independent | 183 |
| abstract_inverted_index.interaction | 239 |
| abstract_inverted_index.recommender | 76, 246 |
| abstract_inverted_index.theoretical | 234 |
| abstract_inverted_index.distribution | 17, 44, 61 |
| abstract_inverted_index.experiments, | 172 |
| abstract_inverted_index.interactions | 89, 107 |
| abstract_inverted_index.\textit{share | 26 |
| abstract_inverted_index.corresponding | 67, 186 |
| abstract_inverted_index.demonstrating | 226 |
| abstract_inverted_index.respectively, | 155 |
| abstract_inverted_index.respectively. | 199 |
| abstract_inverted_index.generalization | 132, 178 |
| abstract_inverted_index.\textit{unlabeled} | 38 |
| abstract_inverted_index.$\widetilde{O}\left(\sqrt{\frac{dr}{N}}\right)$ | 154 |
| abstract_inverted_index.$\widetilde{O}\left(\sqrt{\frac{nd}{M}}\right)$ | 152 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |