Generalized Data Thinning Using Sufficient Statistics Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.12931
Our goal is to develop a general strategy to decompose a random variable $X$ into multiple independent random variables, without sacrificing any information about unknown parameters. A recent paper showed that for some well-known natural exponential families, $X$ can be "thinned" into independent random variables $X^{(1)}, \ldots, X^{(K)}$, such that $X = \sum_{k=1}^K X^{(k)}$. These independent random variables can then be used for various model validation and inference tasks, including in contexts where traditional sample splitting fails. In this paper, we generalize their procedure by relaxing this summation requirement and simply asking that some known function of the independent random variables exactly reconstruct $X$. This generalization of the procedure serves two purposes. First, it greatly expands the families of distributions for which thinning can be performed. Second, it unifies sample splitting and data thinning, which on the surface seem to be very different, as applications of the same principle. This shared principle is sufficiency. We use this insight to perform generalized thinning operations for a diverse set of families.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.12931
- https://arxiv.org/pdf/2303.12931
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4360885699
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4360885699Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.12931Digital Object Identifier
- Title
-
Generalized Data Thinning Using Sufficient StatisticsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-22Full publication date if available
- Authors
-
Ameer Dharamshi, Anna Neufeld, Keshav Motwani, Lucy L. Gao, Daniela Witten, Jacob BienList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.12931Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.12931Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.12931Direct OA link when available
- Concepts
-
Generalization, Random variable, Thinning, Mathematics, Inference, Exponential function, Sample (material), Variables, Set (abstract data type), Function (biology), Variable (mathematics), Sum of normally distributed random variables, Applied mathematics, Statistics, Computer science, Marginal distribution, Artificial intelligence, Mathematical analysis, Ecology, Biology, Evolutionary biology, Chemistry, Programming language, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4360885699 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.12931 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.12931 |
| ids.openalex | https://openalex.org/W4360885699 |
| fwci | |
| type | preprint |
| title | Generalized Data Thinning Using Sufficient Statistics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9966999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7619239091873169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C122123141 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7374474406242371 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[1].display_name | Random variable |
| concepts[2].id | https://openalex.org/C2781353100 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6087685227394104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1266974 |
| concepts[2].display_name | Thinning |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5891215801239014 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5755351185798645 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C151376022 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5298238396644592 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q168698 |
| concepts[5].display_name | Exponential function |
| concepts[6].id | https://openalex.org/C198531522 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5294413566589355 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[6].display_name | Sample (material) |
| concepts[7].id | https://openalex.org/C27574286 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5174508690834045 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[7].display_name | Variables |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5065284967422485 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C14036430 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49988341331481934 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[9].display_name | Function (biology) |
| concepts[10].id | https://openalex.org/C182365436 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49274900555610657 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[10].display_name | Variable (mathematics) |
| concepts[11].id | https://openalex.org/C182514268 |
| concepts[11].level | 4 |
| concepts[11].score | 0.46124711632728577 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7636889 |
| concepts[11].display_name | Sum of normally distributed random variables |
| concepts[12].id | https://openalex.org/C28826006 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4253648817539215 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[12].display_name | Applied mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4196930229663849 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3694046139717102 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C165216359 |
| concepts[15].level | 3 |
| concepts[15].score | 0.2613530457019806 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q670653 |
| concepts[15].display_name | Marginal distribution |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.21671313047409058 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1592276394367218 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C18903297 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[18].display_name | Ecology |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C78458016 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[20].display_name | Evolutionary biology |
| concepts[21].id | https://openalex.org/C185592680 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[21].display_name | Chemistry |
| concepts[22].id | https://openalex.org/C199360897 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[22].display_name | Programming language |
| concepts[23].id | https://openalex.org/C43617362 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[23].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7619239091873169 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/random-variable |
| keywords[1].score | 0.7374474406242371 |
| keywords[1].display_name | Random variable |
| keywords[2].id | https://openalex.org/keywords/thinning |
| keywords[2].score | 0.6087685227394104 |
| keywords[2].display_name | Thinning |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5891215801239014 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.5755351185798645 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/exponential-function |
| keywords[5].score | 0.5298238396644592 |
| keywords[5].display_name | Exponential function |
| keywords[6].id | https://openalex.org/keywords/sample |
| keywords[6].score | 0.5294413566589355 |
| keywords[6].display_name | Sample (material) |
| keywords[7].id | https://openalex.org/keywords/variables |
| keywords[7].score | 0.5174508690834045 |
| keywords[7].display_name | Variables |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.5065284967422485 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/function |
| keywords[9].score | 0.49988341331481934 |
| keywords[9].display_name | Function (biology) |
| keywords[10].id | https://openalex.org/keywords/variable |
| keywords[10].score | 0.49274900555610657 |
| keywords[10].display_name | Variable (mathematics) |
| keywords[11].id | https://openalex.org/keywords/sum-of-normally-distributed-random-variables |
| keywords[11].score | 0.46124711632728577 |
| keywords[11].display_name | Sum of normally distributed random variables |
| keywords[12].id | https://openalex.org/keywords/applied-mathematics |
| keywords[12].score | 0.4253648817539215 |
| keywords[12].display_name | Applied mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.4196930229663849 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.3694046139717102 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/marginal-distribution |
| keywords[15].score | 0.2613530457019806 |
| keywords[15].display_name | Marginal distribution |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.21671313047409058 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[17].score | 0.1592276394367218 |
| keywords[17].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.12931 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.12931 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.12931 |
| locations[1].id | doi:10.48550/arxiv.2303.12931 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.12931 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003007011 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5505-4765 |
| authorships[0].author.display_name | Ameer Dharamshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dharamshi, Ameer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085126721 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7638-0861 |
| authorships[1].author.display_name | Anna Neufeld |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Neufeld, Anna |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5011141535 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1457-2731 |
| authorships[2].author.display_name | Keshav Motwani |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Motwani, Keshav |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079270469 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6811-0746 |
| authorships[3].author.display_name | Lucy L. Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Lucy L. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031682567 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1764-1184 |
| authorships[4].author.display_name | Daniela Witten |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Witten, Daniela |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5076854744 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jacob Bien |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Bien, Jacob |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.12931 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generalized Data Thinning Using Sufficient Statistics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9966999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W66664637, https://openalex.org/W4238695833, https://openalex.org/W2479806575, https://openalex.org/W1938217105, https://openalex.org/W3146326268, https://openalex.org/W3195391652, https://openalex.org/W2414029657, https://openalex.org/W2183541783, https://openalex.org/W2066502241, https://openalex.org/W2567440227 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.12931 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.12931 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.12931 |
| primary_location.id | pmh:oai:arXiv.org:2303.12931 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.12931 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.12931 |
| publication_date | 2023-03-22 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 51 |
| abstract_inverted_index.A | 26 |
| abstract_inverted_index.a | 5, 10, 164 |
| abstract_inverted_index.$X | 50 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.We | 154 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.be | 39, 60, 124, 140 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.in | 70 |
| abstract_inverted_index.is | 2, 152 |
| abstract_inverted_index.it | 113, 127 |
| abstract_inverted_index.of | 96, 106, 118, 145, 167 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.to | 3, 8, 139, 158 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.$X$ | 13, 37 |
| abstract_inverted_index.Our | 0 |
| abstract_inverted_index.and | 66, 89, 131 |
| abstract_inverted_index.any | 21 |
| abstract_inverted_index.can | 38, 58, 123 |
| abstract_inverted_index.for | 31, 62, 120, 163 |
| abstract_inverted_index.set | 166 |
| abstract_inverted_index.the | 97, 107, 116, 136, 146 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.use | 155 |
| abstract_inverted_index.$X$. | 103 |
| abstract_inverted_index.This | 104, 149 |
| abstract_inverted_index.data | 132 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.into | 14, 41 |
| abstract_inverted_index.same | 147 |
| abstract_inverted_index.seem | 138 |
| abstract_inverted_index.some | 32, 93 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.that | 30, 49, 92 |
| abstract_inverted_index.then | 59 |
| abstract_inverted_index.this | 78, 86, 156 |
| abstract_inverted_index.used | 61 |
| abstract_inverted_index.very | 141 |
| abstract_inverted_index.These | 54 |
| abstract_inverted_index.about | 23 |
| abstract_inverted_index.known | 94 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.paper | 28 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.where | 72 |
| abstract_inverted_index.which | 121, 134 |
| abstract_inverted_index.First, | 112 |
| abstract_inverted_index.asking | 91 |
| abstract_inverted_index.fails. | 76 |
| abstract_inverted_index.paper, | 79 |
| abstract_inverted_index.random | 11, 17, 43, 56, 99 |
| abstract_inverted_index.recent | 27 |
| abstract_inverted_index.sample | 74, 129 |
| abstract_inverted_index.serves | 109 |
| abstract_inverted_index.shared | 150 |
| abstract_inverted_index.showed | 29 |
| abstract_inverted_index.simply | 90 |
| abstract_inverted_index.tasks, | 68 |
| abstract_inverted_index.Second, | 126 |
| abstract_inverted_index.\ldots, | 46 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.diverse | 165 |
| abstract_inverted_index.exactly | 101 |
| abstract_inverted_index.expands | 115 |
| abstract_inverted_index.general | 6 |
| abstract_inverted_index.greatly | 114 |
| abstract_inverted_index.insight | 157 |
| abstract_inverted_index.natural | 34 |
| abstract_inverted_index.perform | 159 |
| abstract_inverted_index.surface | 137 |
| abstract_inverted_index.unifies | 128 |
| abstract_inverted_index.unknown | 24 |
| abstract_inverted_index.various | 63 |
| abstract_inverted_index.without | 19 |
| abstract_inverted_index.contexts | 71 |
| abstract_inverted_index.families | 117 |
| abstract_inverted_index.function | 95 |
| abstract_inverted_index.multiple | 15 |
| abstract_inverted_index.relaxing | 85 |
| abstract_inverted_index.strategy | 7 |
| abstract_inverted_index.thinning | 122, 161 |
| abstract_inverted_index.variable | 12 |
| abstract_inverted_index."thinned" | 40 |
| abstract_inverted_index.$X^{(1)}, | 45 |
| abstract_inverted_index.X^{(K)}$, | 47 |
| abstract_inverted_index.X^{(k)}$. | 53 |
| abstract_inverted_index.decompose | 9 |
| abstract_inverted_index.families, | 36 |
| abstract_inverted_index.families. | 168 |
| abstract_inverted_index.including | 69 |
| abstract_inverted_index.inference | 67 |
| abstract_inverted_index.principle | 151 |
| abstract_inverted_index.procedure | 83, 108 |
| abstract_inverted_index.purposes. | 111 |
| abstract_inverted_index.splitting | 75, 130 |
| abstract_inverted_index.summation | 87 |
| abstract_inverted_index.thinning, | 133 |
| abstract_inverted_index.variables | 44, 57, 100 |
| abstract_inverted_index.different, | 142 |
| abstract_inverted_index.generalize | 81 |
| abstract_inverted_index.operations | 162 |
| abstract_inverted_index.performed. | 125 |
| abstract_inverted_index.principle. | 148 |
| abstract_inverted_index.validation | 65 |
| abstract_inverted_index.variables, | 18 |
| abstract_inverted_index.well-known | 33 |
| abstract_inverted_index.exponential | 35 |
| abstract_inverted_index.generalized | 160 |
| abstract_inverted_index.independent | 16, 42, 55, 98 |
| abstract_inverted_index.information | 22 |
| abstract_inverted_index.parameters. | 25 |
| abstract_inverted_index.reconstruct | 102 |
| abstract_inverted_index.requirement | 88 |
| abstract_inverted_index.sacrificing | 20 |
| abstract_inverted_index.traditional | 73 |
| abstract_inverted_index.\sum_{k=1}^K | 52 |
| abstract_inverted_index.applications | 144 |
| abstract_inverted_index.sufficiency. | 153 |
| abstract_inverted_index.distributions | 119 |
| abstract_inverted_index.generalization | 105 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |