Generalized Dynamic Principal Components Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1080/01621459.2015.1072542
Brillinger defined dynamic principal components (DPC) for time series based on a reconstruction criterion. He gave a very elegant theoretical solution and proposed an estimator which is consistent under stationarity. Here, we propose a new enterally empirical approach to DPC. The main differences with the existing methods—mainly Brillinger procedure—are (1) the DPC we propose need not be a linear combination of the observations and (2) it can be based on a variety of loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results; however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a better adaptation to possible nonstationary features of the series. We also present a robust version of our procedure that allows to estimate the DPC when the series have outlier contamination. We give iterative algorithms to compute the proposed procedures that can be used with a large number of variables. Our nonrobust and robust procedures are illustrated with real datasets. Supplementary materials for this article are available online.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/01621459.2015.1072542
- OA Status
- green
- Cited By
- 53
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2266349331
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2266349331Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/01621459.2015.1072542Digital Object Identifier
- Title
-
Generalized Dynamic Principal ComponentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-08-07Full publication date if available
- Authors
-
Daniel Peña, Vı́ctor J. YohaiList of authors in order
- Landing page
-
https://doi.org/10.1080/01621459.2015.1072542Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/journal_contribution/Generalized_Dynamic_Principal_Components/1569246Direct OA link when available
- Concepts
-
Outlier, Series (stratigraphy), Estimator, Principal component analysis, Consistency (knowledge bases), Computer science, Algorithm, Mathematics, Mathematical optimization, Statistics, Artificial intelligence, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
53Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 5, 2022: 6, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2266349331 |
|---|---|
| doi | https://doi.org/10.1080/01621459.2015.1072542 |
| ids.doi | https://doi.org/10.1080/01621459.2015.1072542 |
| ids.mag | 2266349331 |
| ids.openalex | https://openalex.org/W2266349331 |
| fwci | 3.89147318 |
| type | article |
| title | Generalized Dynamic Principal Components |
| biblio.issue | 515 |
| biblio.volume | 111 |
| biblio.last_page | 1131 |
| biblio.first_page | 1121 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7279641032218933 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6805007457733154 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6513060927391052 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C27438332 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5797884464263916 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[3].display_name | Principal component analysis |
| concepts[4].id | https://openalex.org/C2776436953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5752933025360107 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[4].display_name | Consistency (knowledge bases) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5422111749649048 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4764059782028198 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4238620400428772 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39719653129577637 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.22075477242469788 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1628035604953766 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.7279641032218933 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.6805007457733154 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6513060927391052 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[3].score | 0.5797884464263916 |
| keywords[3].display_name | Principal component analysis |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.5752933025360107 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5422111749649048 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4764059782028198 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.4238620400428772 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.39719653129577637 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.22075477242469788 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.1628035604953766 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1080/01621459.2015.1072542 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4394736638 |
| locations[0].source.issn | 0162-1459, 1537-274X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0162-1459 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Statistical Association |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Statistical Association |
| locations[0].landing_page_url | https://doi.org/10.1080/01621459.2015.1072542 |
| locations[1].id | pmh:oai:RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1121-1131 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RePEc: Research Papers in Economics |
| locations[1].source.host_organization | https://openalex.org/I77793887 |
| locations[1].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[1].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10.1080/01621459.2015.1072542 |
| locations[2].id | pmh:oai:figshare.com:article/1569246 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400572 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[2].source.host_organization | https://openalex.org/I196829312 |
| locations[2].source.host_organization_name | La Trobe University |
| locations[2].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://figshare.com/articles/journal_contribution/Generalized_Dynamic_Principal_Components/1569246 |
| locations[3].id | doi:10.6084/m9.figshare.1569246.v3 |
| locations[3].is_oa | True |
| locations[3].source | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.6084/m9.figshare.1569246.v3 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5088521043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9137-1557 |
| authorships[0].author.display_name | Daniel Peña |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I50357001 |
| authorships[0].affiliations[0].raw_affiliation_string | Statistics Department, Universidad Carlos II de Madrid, Getafe, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I50357001 |
| authorships[0].institutions[0].ror | https://ror.org/03ths8210 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I50357001 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Carlos III de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Peña |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Statistics Department, Universidad Carlos II de Madrid, Getafe, Spain |
| authorships[1].author.id | https://openalex.org/A5110016441 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vı́ctor J. Yohai |
| authorships[1].countries | AR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24354313 |
| authorships[1].affiliations[0].raw_affiliation_string | Mathematics Department, Ciudad Universitaria, Buenos Aires, Argentina |
| authorships[1].institutions[0].id | https://openalex.org/I24354313 |
| authorships[1].institutions[0].ror | https://ror.org/0081fs513 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24354313 |
| authorships[1].institutions[0].country_code | AR |
| authorships[1].institutions[0].display_name | Universidad de Buenos Aires |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Victor J. Yohai |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Mathematics Department, Ciudad Universitaria, Buenos Aires, Argentina |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/journal_contribution/Generalized_Dynamic_Principal_Components/1569246 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generalized Dynamic Principal Components |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W1975632186, https://openalex.org/W3027745756, https://openalex.org/W3205213561, https://openalex.org/W2531880140, https://openalex.org/W2036609560, https://openalex.org/W346861917, https://openalex.org/W3024018414, https://openalex.org/W4287880334, https://openalex.org/W2126145365, https://openalex.org/W4210897550 |
| cited_by_count | 53 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 9 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 6 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 5 |
| counts_by_year[8].year | 2016 |
| counts_by_year[8].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:figshare.com:article/1569246 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://figshare.com/articles/journal_contribution/Generalized_Dynamic_Principal_Components/1569246 |
| primary_location.id | doi:10.1080/01621459.2015.1072542 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4394736638 |
| primary_location.source.issn | 0162-1459, 1537-274X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0162-1459 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Statistical Association |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Statistical Association |
| primary_location.landing_page_url | https://doi.org/10.1080/01621459.2015.1072542 |
| publication_date | 2015-08-07 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2072472224, https://openalex.org/W2159706540, https://openalex.org/W2070173743, https://openalex.org/W2010951077, https://openalex.org/W2016547905, https://openalex.org/W1991135386, https://openalex.org/W3125070724, https://openalex.org/W2008975375, https://openalex.org/W2170712864, https://openalex.org/W2241662248, https://openalex.org/W2077791644, https://openalex.org/W2950126918, https://openalex.org/W2117545553, https://openalex.org/W2046692379, https://openalex.org/W4255230573, https://openalex.org/W2063756795, https://openalex.org/W2063224808, https://openalex.org/W1987466849, https://openalex.org/W2038395331, https://openalex.org/W2038386801, https://openalex.org/W4251038355, https://openalex.org/W36711357, https://openalex.org/W4210616753, https://openalex.org/W2564047597, https://openalex.org/W1994110039, https://openalex.org/W2079563517, https://openalex.org/W206177690, https://openalex.org/W3016175113, https://openalex.org/W3101440325, https://openalex.org/W2017873498, https://openalex.org/W2164570713, https://openalex.org/W4238306122, https://openalex.org/W2033728423, https://openalex.org/W2098301339, https://openalex.org/W1486034269, https://openalex.org/W2016189212 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 11, 16, 33, 57, 70, 93, 102, 115, 147 |
| abstract_inverted_index.He | 14 |
| abstract_inverted_index.We | 112, 133 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.at | 101 |
| abstract_inverted_index.be | 56, 67, 144 |
| abstract_inverted_index.do | 81 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 60, 72, 109, 118, 150 |
| abstract_inverted_index.on | 10, 69 |
| abstract_inverted_index.to | 38, 89, 105, 123, 137 |
| abstract_inverted_index.we | 31, 52, 80 |
| abstract_inverted_index.(1) | 49 |
| abstract_inverted_index.(2) | 64 |
| abstract_inverted_index.DPC | 51, 126 |
| abstract_inverted_index.Our | 152 |
| abstract_inverted_index.The | 40 |
| abstract_inverted_index.and | 21, 63, 154 |
| abstract_inverted_index.any | 84 |
| abstract_inverted_index.are | 157, 167 |
| abstract_inverted_index.can | 66, 143 |
| abstract_inverted_index.for | 6, 164 |
| abstract_inverted_index.has | 92 |
| abstract_inverted_index.new | 34 |
| abstract_inverted_index.not | 55, 82 |
| abstract_inverted_index.our | 98, 119 |
| abstract_inverted_index.the | 44, 50, 61, 110, 125, 128, 139 |
| abstract_inverted_index.DPC. | 39 |
| abstract_inverted_index.aims | 100 |
| abstract_inverted_index.also | 113 |
| abstract_inverted_index.gave | 15 |
| abstract_inverted_index.give | 134 |
| abstract_inverted_index.have | 130 |
| abstract_inverted_index.loss | 73 |
| abstract_inverted_index.main | 41 |
| abstract_inverted_index.need | 54 |
| abstract_inverted_index.real | 160 |
| abstract_inverted_index.that | 121, 142 |
| abstract_inverted_index.this | 165 |
| abstract_inverted_index.time | 7 |
| abstract_inverted_index.used | 145 |
| abstract_inverted_index.very | 17, 94 |
| abstract_inverted_index.when | 127 |
| abstract_inverted_index.with | 43, 146, 159 |
| abstract_inverted_index.(DPC) | 5 |
| abstract_inverted_index.Here, | 30 |
| abstract_inverted_index.based | 9, 68 |
| abstract_inverted_index.large | 148 |
| abstract_inverted_index.ones. | 77 |
| abstract_inverted_index.under | 28 |
| abstract_inverted_index.which | 25, 91 |
| abstract_inverted_index.Unlike | 78 |
| abstract_inverted_index.allows | 122 |
| abstract_inverted_index.better | 103 |
| abstract_inverted_index.linear | 58 |
| abstract_inverted_index.number | 149 |
| abstract_inverted_index.robust | 76, 116, 155 |
| abstract_inverted_index.series | 8, 129 |
| abstract_inverted_index.strong | 95 |
| abstract_inverted_index.article | 166 |
| abstract_inverted_index.compute | 138 |
| abstract_inverted_index.concept | 99 |
| abstract_inverted_index.defined | 1 |
| abstract_inverted_index.dynamic | 2 |
| abstract_inverted_index.elegant | 18 |
| abstract_inverted_index.flavor, | 97 |
| abstract_inverted_index.online. | 169 |
| abstract_inverted_index.outlier | 131 |
| abstract_inverted_index.present | 114 |
| abstract_inverted_index.propose | 32, 53 |
| abstract_inverted_index.series. | 111 |
| abstract_inverted_index.variety | 71 |
| abstract_inverted_index.version | 117 |
| abstract_inverted_index.approach | 37 |
| abstract_inverted_index.contrary | 88 |
| abstract_inverted_index.estimate | 124 |
| abstract_inverted_index.existing | 45 |
| abstract_inverted_index.features | 108 |
| abstract_inverted_index.however, | 87 |
| abstract_inverted_index.possible | 106 |
| abstract_inverted_index.proposed | 22, 140 |
| abstract_inverted_index.results; | 86 |
| abstract_inverted_index.solution | 20 |
| abstract_inverted_index.available | 168 |
| abstract_inverted_index.datasets. | 161 |
| abstract_inverted_index.empirical | 36 |
| abstract_inverted_index.enterally | 35 |
| abstract_inverted_index.establish | 83 |
| abstract_inverted_index.estimator | 24 |
| abstract_inverted_index.functions | 74 |
| abstract_inverted_index.including | 75 |
| abstract_inverted_index.iterative | 135 |
| abstract_inverted_index.materials | 163 |
| abstract_inverted_index.nonrobust | 153 |
| abstract_inverted_index.principal | 3 |
| abstract_inverted_index.procedure | 120 |
| abstract_inverted_index.Brillinger | 0, 47 |
| abstract_inverted_index.adaptation | 104 |
| abstract_inverted_index.algorithms | 136 |
| abstract_inverted_index.components | 4 |
| abstract_inverted_index.consistent | 27 |
| abstract_inverted_index.criterion. | 13 |
| abstract_inverted_index.procedures | 141, 156 |
| abstract_inverted_index.variables. | 151 |
| abstract_inverted_index.Brillinger, | 79 |
| abstract_inverted_index.combination | 59 |
| abstract_inverted_index.consistency | 85 |
| abstract_inverted_index.differences | 42 |
| abstract_inverted_index.illustrated | 158 |
| abstract_inverted_index.theoretical | 19 |
| abstract_inverted_index.observations | 62 |
| abstract_inverted_index.stationarity | 96 |
| abstract_inverted_index.Supplementary | 162 |
| abstract_inverted_index.nonstationary | 107 |
| abstract_inverted_index.stationarity. | 29 |
| abstract_inverted_index.contamination. | 132 |
| abstract_inverted_index.reconstruction | 12 |
| abstract_inverted_index.Brillinger’s, | 90 |
| abstract_inverted_index.procedure—are | 48 |
| abstract_inverted_index.methods—mainly | 46 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5110016441 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I24354313 |
| citation_normalized_percentile.value | 0.92995685 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |