Generalized Natural Density DF(Fk) of Fibonacci Word Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26117/2079-6641-2025-52-3-7-23
This paper explores profound generalizations of the Fibonacci sequence, delving into random Fibonacci sequences, k-Fibonacci words, and their combinatorial properties. We established that the nth root of the absolute value of terms in a random Fibonacci sequence converges to 1.13198824 . . ., with subsequent refinements by Rittaud yielding a limit of approximately 1.20556943 for the expected value’s n-th root. Novel definitions, such as the natural density of sets of positive integers and the limiting density of Fibonacci sequences modulo powers of primes, provide a robust framework for our analysis. We introduce the concept of k-Fibonacci words, extending classical Fibonacci words to higher dimensions, and investigate their patterns alongside sequences like the Thue-Morse and Sturmian words. Our main results include a unique representation theorem for real numbers using Fibonacci numbers, a symmetry identity for sums involving Fibonacci words, $\sum_{k=1}^{b} \dfrac{(-1)^k F_a}{F_k F_{k+a}}= \sum_{k=1}^{a} \dfrac{(-1)^k F_b}{F_k F_{k+b}}$, and an infinite series identity linking Fibonacci terms to the golden ratio. These findings underscore the intricate interplay between number theory and combinatorics, illuminating the rich structure of Fibonacci-related sequences. В данной статье рассматриваются глубокие обобщения последовательности Фибоначчи, включая случайные последовательности Фибоначчи, k-слова Фибоначчи и их комбинаторные свойства. Мы установили, что корень n-й степени из абсолютного значения членов случайной последовательности Фибоначчи сходится к 1.13198824 . . ., с последующими уточнениями Ритто, дающими предел приблизительно 1.20556943 для корня n-й степени ожидаемого значения. Новые определения, такие как естественная плотность множеств положительных целых чисел и предельная плотность последовательностей Фибоначчи по модулю степеней простых чисел, обеспечивают надежную основу для нашего анализа. Мы вводим концепцию k-слов Фибоначчи, расширяя классические слова Фибоначчи до более высоких измерений, и исследуем их закономерности наряду с последовательностями, такими как слова Туэ-Морса и Штурма. Наши основные результаты включают теорему об уникальном представлении действительных чисел с помощью чисел Фибоначчи, тождество симметрии для сумм, содержащих слова Фибоначчи, $\sum_{k=1}^{b} \dfrac{(-1)^k F_a}{F_k F_{k+a}}= \sum_{k=1}^{a} \dfrac{(-1)^k F_b}{F_k F_{k+b}}$, и тождество бесконечного ряда, связывающее члены Фибоначчи с золотым сечением. Эти результаты подчёркивают сложную взаимосвязь теории чисел и комбинаторики, проливая свет на богатую структуру последовательностей, связанных с числами Фибоначчи.
Related Topics
- Type
- article
- Language
- ru
- Landing Page
- https://doi.org/10.26117/2079-6641-2025-52-3-7-23
- https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdf
- OA Status
- diamond
- References
- 13
- OpenAlex ID
- https://openalex.org/W4416764183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416764183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26117/2079-6641-2025-52-3-7-23Digital Object Identifier
- Title
-
Generalized Natural Density DF(Fk) of Fibonacci WordWork title
- Type
-
articleOpenAlex work type
- Language
-
ruPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-27Full publication date if available
- Authors
-
Duaa Abdullah, Jasem HamoudList of authors in order
- Landing page
-
https://doi.org/10.26117/2079-6641-2025-52-3-7-23Publisher landing page
- PDF URL
-
https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416764183 |
|---|---|
| doi | https://doi.org/10.26117/2079-6641-2025-52-3-7-23 |
| ids.doi | https://doi.org/10.26117/2079-6641-2025-52-3-7-23 |
| ids.openalex | https://openalex.org/W4416764183 |
| fwci | |
| type | article |
| title | Generalized Natural Density DF(Fk) of Fibonacci Word |
| biblio.issue | 3 |
| biblio.volume | 52 |
| biblio.last_page | 23 |
| biblio.first_page | 7 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | ru |
| locations[0].id | doi:10.26117/2079-6641-2025-52-3-7-23 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737796025 |
| locations[0].source.issn | 2079-6641, 2079-665X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-6641 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Вестник КРАУНЦ Физико-математические науки |
| locations[0].source.host_organization | https://openalex.org/P4310312609 |
| locations[0].source.host_organization_name | KamGU by Vitus Bering |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312609 |
| locations[0].source.host_organization_lineage_names | KamGU by Vitus Bering |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Вестник КРАУНЦ. Физико-математические науки |
| locations[0].landing_page_url | https://doi.org/10.26117/2079-6641-2025-52-3-7-23 |
| locations[1].id | pmh:oai:doaj.org/article:969977775f1d4aeebaeaca28825d9acd |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Vestnik KRAUNC: Fiziko-Matematičeskie Nauki, Vol 52, Iss 3, Pp 7-23 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/969977775f1d4aeebaeaca28825d9acd |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5110257990 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6855-1729 |
| authorships[0].author.display_name | Duaa Abdullah |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I153845743 |
| authorships[0].affiliations[0].raw_affiliation_string | Moscow Institute of Physics and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I153845743 |
| authorships[0].institutions[0].ror | https://ror.org/00v0z9322 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I153845743 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Moscow Institute of Physics and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D. Abdullah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Moscow Institute of Physics and Technology |
| authorships[1].author.id | https://openalex.org/A5097398935 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-0192-3627 |
| authorships[1].author.display_name | Jasem Hamoud |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I153845743 |
| authorships[1].affiliations[0].raw_affiliation_string | Moscow Institute of Physics and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I153845743 |
| authorships[1].institutions[0].ror | https://ror.org/00v0z9322 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I153845743 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Moscow Institute of Physics and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | J. Hamoud |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Moscow Institute of Physics and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Generalized Natural Density DF(Fk) of Fibonacci Word |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:07:19.613710 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26117/2079-6641-2025-52-3-7-23 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737796025 |
| best_oa_location.source.issn | 2079-6641, 2079-665X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-6641 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Вестник КРАУНЦ Физико-математические науки |
| best_oa_location.source.host_organization | https://openalex.org/P4310312609 |
| best_oa_location.source.host_organization_name | KamGU by Vitus Bering |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312609 |
| best_oa_location.source.host_organization_lineage_names | KamGU by Vitus Bering |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Вестник КРАУНЦ. Физико-математические науки |
| best_oa_location.landing_page_url | https://doi.org/10.26117/2079-6641-2025-52-3-7-23 |
| primary_location.id | doi:10.26117/2079-6641-2025-52-3-7-23 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737796025 |
| primary_location.source.issn | 2079-6641, 2079-665X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-6641 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Вестник КРАУНЦ Физико-математические науки |
| primary_location.source.host_organization | https://openalex.org/P4310312609 |
| primary_location.source.host_organization_name | KamGU by Vitus Bering |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312609 |
| primary_location.source.host_organization_lineage_names | KamGU by Vitus Bering |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://krasec.ru/wp-content/uploads/2025/11/Abdulah-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Вестник КРАУНЦ. Физико-математические науки |
| primary_location.landing_page_url | https://doi.org/10.26117/2079-6641-2025-52-3-7-23 |
| publication_date | 2025-11-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2131524274, https://openalex.org/W1586417893, https://openalex.org/W3143560080, https://openalex.org/W2734772720, https://openalex.org/W4410585877, https://openalex.org/W2092205945, https://openalex.org/W824937884, https://openalex.org/W2922163714, https://openalex.org/W4386075174, https://openalex.org/W2075512443, https://openalex.org/W2072843330, https://openalex.org/W2031396632, https://openalex.org/W3174430097 |
| referenced_works_count | 13 |
| abstract_inverted_index.. | 40, 41, 210, 211 |
| abstract_inverted_index.a | 33, 49, 84, 120, 130 |
| abstract_inverted_index.., | 42, 212 |
| abstract_inverted_index.We | 20, 90 |
| abstract_inverted_index.an | 147 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.by | 46 |
| abstract_inverted_index.in | 32 |
| abstract_inverted_index.of | 5, 26, 30, 51, 67, 69, 76, 81, 94, 173 |
| abstract_inverted_index.to | 38, 101, 154 |
| abstract_inverted_index.В | 176 |
| abstract_inverted_index.и | 190, 237, 266, 277, 308, 325 |
| abstract_inverted_index.к | 208 |
| abstract_inverted_index.с | 213, 271, 289, 315, 334 |
| abstract_inverted_index.Our | 116 |
| abstract_inverted_index.and | 16, 72, 104, 113, 146, 167 |
| abstract_inverted_index.for | 54, 87, 124, 133 |
| abstract_inverted_index.nth | 24 |
| abstract_inverted_index.our | 88 |
| abstract_inverted_index.the | 6, 23, 27, 55, 64, 73, 92, 111, 155, 161, 170 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.into | 10 |
| abstract_inverted_index.like | 110 |
| abstract_inverted_index.main | 117 |
| abstract_inverted_index.n-th | 58 |
| abstract_inverted_index.n-й | 198, 223 |
| abstract_inverted_index.real | 125 |
| abstract_inverted_index.rich | 171 |
| abstract_inverted_index.root | 25 |
| abstract_inverted_index.sets | 68 |
| abstract_inverted_index.such | 62 |
| abstract_inverted_index.sums | 134 |
| abstract_inverted_index.that | 22 |
| abstract_inverted_index.with | 43 |
| abstract_inverted_index.Мы | 194, 253 |
| abstract_inverted_index.до | 262 |
| abstract_inverted_index.из | 200 |
| abstract_inverted_index.их | 191, 268 |
| abstract_inverted_index.на | 329 |
| abstract_inverted_index.об | 284 |
| abstract_inverted_index.по | 242 |
| abstract_inverted_index.Novel | 60 |
| abstract_inverted_index.These | 158 |
| abstract_inverted_index.limit | 50 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.root. | 59 |
| abstract_inverted_index.terms | 31, 153 |
| abstract_inverted_index.their | 17, 106 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.value | 29 |
| abstract_inverted_index.words | 100 |
| abstract_inverted_index.golden | 156 |
| abstract_inverted_index.higher | 102 |
| abstract_inverted_index.modulo | 79 |
| abstract_inverted_index.number | 165 |
| abstract_inverted_index.powers | 80 |
| abstract_inverted_index.random | 11, 34 |
| abstract_inverted_index.ratio. | 157 |
| abstract_inverted_index.robust | 85 |
| abstract_inverted_index.series | 149 |
| abstract_inverted_index.theory | 166 |
| abstract_inverted_index.unique | 121 |
| abstract_inverted_index.words, | 15, 96, 137 |
| abstract_inverted_index.words. | 115 |
| abstract_inverted_index.Эти | 318 |
| abstract_inverted_index.для | 221, 250, 295 |
| abstract_inverted_index.как | 230, 274 |
| abstract_inverted_index.что | 196 |
| abstract_inverted_index.Rittaud | 47 |
| abstract_inverted_index.between | 164 |
| abstract_inverted_index.concept | 93 |
| abstract_inverted_index.delving | 9 |
| abstract_inverted_index.density | 66, 75 |
| abstract_inverted_index.include | 119 |
| abstract_inverted_index.linking | 151 |
| abstract_inverted_index.natural | 65 |
| abstract_inverted_index.numbers | 126 |
| abstract_inverted_index.primes, | 82 |
| abstract_inverted_index.provide | 83 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.theorem | 123 |
| abstract_inverted_index.F_a}{F_k | 140, 302 |
| abstract_inverted_index.F_b}{F_k | 144, 306 |
| abstract_inverted_index.Sturmian | 114 |
| abstract_inverted_index.absolute | 28 |
| abstract_inverted_index.expected | 56 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.findings | 159 |
| abstract_inverted_index.identity | 132, 150 |
| abstract_inverted_index.infinite | 148 |
| abstract_inverted_index.integers | 71 |
| abstract_inverted_index.limiting | 74 |
| abstract_inverted_index.numbers, | 129 |
| abstract_inverted_index.patterns | 107 |
| abstract_inverted_index.positive | 70 |
| abstract_inverted_index.profound | 3 |
| abstract_inverted_index.sequence | 36 |
| abstract_inverted_index.symmetry | 131 |
| abstract_inverted_index.yielding | 48 |
| abstract_inverted_index.Наши | 279 |
| abstract_inverted_index.свет | 328 |
| abstract_inverted_index.F_{k+a}}= | 141, 303 |
| abstract_inverted_index.Fibonacci | 7, 12, 35, 77, 99, 128, 136, 152 |
| abstract_inverted_index.alongside | 108 |
| abstract_inverted_index.analysis. | 89 |
| abstract_inverted_index.classical | 98 |
| abstract_inverted_index.converges | 37 |
| abstract_inverted_index.extending | 97 |
| abstract_inverted_index.framework | 86 |
| abstract_inverted_index.interplay | 163 |
| abstract_inverted_index.intricate | 162 |
| abstract_inverted_index.introduce | 91 |
| abstract_inverted_index.involving | 135 |
| abstract_inverted_index.sequence, | 8 |
| abstract_inverted_index.sequences | 78, 109 |
| abstract_inverted_index.structure | 172 |
| abstract_inverted_index.value’s | 57 |
| abstract_inverted_index.ряда, | 311 |
| abstract_inverted_index.сумм, | 296 |
| abstract_inverted_index.1.13198824 | 39, 209 |
| abstract_inverted_index.1.20556943 | 53, 220 |
| abstract_inverted_index.F_{k+b}}$, | 145 |
| abstract_inverted_index.Thue-Morse | 112 |
| abstract_inverted_index.k-слов | 256 |
| abstract_inverted_index.sequences, | 13 |
| abstract_inverted_index.sequences. | 175 |
| abstract_inverted_index.subsequent | 44 |
| abstract_inverted_index.underscore | 160 |
| abstract_inverted_index.Новые | 227 |
| abstract_inverted_index.более | 263 |
| abstract_inverted_index.корня | 222 |
| abstract_inverted_index.слова | 260, 275, 298 |
| abstract_inverted_index.такие | 229 |
| abstract_inverted_index.целых | 235 |
| abstract_inverted_index.чисел | 236, 288, 291, 324 |
| abstract_inverted_index.члены | 313 |
| abstract_inverted_index.dimensions, | 103 |
| abstract_inverted_index.established | 21 |
| abstract_inverted_index.investigate | 105 |
| abstract_inverted_index.k-Fibonacci | 14, 95 |
| abstract_inverted_index.properties. | 19 |
| abstract_inverted_index.refinements | 45 |
| abstract_inverted_index.Ритто, | 216 |
| abstract_inverted_index.чисел, | 246 |
| abstract_inverted_index.definitions, | 61 |
| abstract_inverted_index.illuminating | 169 |
| abstract_inverted_index.k-слова | 188 |
| abstract_inverted_index.вводим | 254 |
| abstract_inverted_index.данной | 177 |
| abstract_inverted_index.корень | 197 |
| abstract_inverted_index.модулю | 243 |
| abstract_inverted_index.наряду | 270 |
| abstract_inverted_index.нашего | 251 |
| abstract_inverted_index.основу | 249 |
| abstract_inverted_index.предел | 218 |
| abstract_inverted_index.статье | 178 |
| abstract_inverted_index.такими | 273 |
| abstract_inverted_index.теории | 323 |
| abstract_inverted_index.членов | 203 |
| abstract_inverted_index.\dfrac{(-1)^k | 139, 143, 301, 305 |
| abstract_inverted_index.approximately | 52 |
| abstract_inverted_index.combinatorial | 18 |
| abstract_inverted_index.Штурма. | 278 |
| abstract_inverted_index.\sum_{k=1}^{a} | 142, 304 |
| abstract_inverted_index.combinatorics, | 168 |
| abstract_inverted_index.representation | 122 |
| abstract_inverted_index.богатую | 330 |
| abstract_inverted_index.включая | 184 |
| abstract_inverted_index.высоких | 264 |
| abstract_inverted_index.дающими | 217 |
| abstract_inverted_index.золотым | 316 |
| abstract_inverted_index.помощью | 290 |
| abstract_inverted_index.простых | 245 |
| abstract_inverted_index.сложную | 321 |
| abstract_inverted_index.степени | 199, 224 |
| abstract_inverted_index.теорему | 283 |
| abstract_inverted_index.числами | 335 |
| abstract_inverted_index.$\sum_{k=1}^{b} | 138, 300 |
| abstract_inverted_index.generalizations | 4 |
| abstract_inverted_index.анализа. | 252 |
| abstract_inverted_index.F_{k+b}}$, | 307 |
| abstract_inverted_index.включают | 282 |
| abstract_inverted_index.глубокие | 180 |
| abstract_inverted_index.значения | 202 |
| abstract_inverted_index.множеств | 233 |
| abstract_inverted_index.надежную | 248 |
| abstract_inverted_index.основные | 280 |
| abstract_inverted_index.проливая | 327 |
| abstract_inverted_index.расширяя | 258 |
| abstract_inverted_index.степеней | 244 |
| abstract_inverted_index.сходится | 207 |
| abstract_inverted_index.Fibonacci-related | 174 |
| abstract_inverted_index.Туэ-Морса | 276 |
| abstract_inverted_index.значения. | 226 |
| abstract_inverted_index.свойства. | 193 |
| abstract_inverted_index.сечением. | 317 |
| abstract_inverted_index.Фибоначчи | 189, 206, 241, 261, 314 |
| abstract_inverted_index.исследуем | 267 |
| abstract_inverted_index.концепцию | 255 |
| abstract_inverted_index.обобщения | 181 |
| abstract_inverted_index.плотность | 232, 239 |
| abstract_inverted_index.связанных | 333 |
| abstract_inverted_index.симметрии | 294 |
| abstract_inverted_index.случайной | 204 |
| abstract_inverted_index.случайные | 185 |
| abstract_inverted_index.структуру | 331 |
| abstract_inverted_index.тождество | 293, 309 |
| abstract_inverted_index.Фибоначчи, | 183, 187, 257, 292, 299 |
| abstract_inverted_index.Фибоначчи. | 336 |
| abstract_inverted_index.измерений, | 265 |
| abstract_inverted_index.ожидаемого | 225 |
| abstract_inverted_index.предельная | 238 |
| abstract_inverted_index.результаты | 281, 319 |
| abstract_inverted_index.содержащих | 297 |
| abstract_inverted_index.уникальном | 285 |
| abstract_inverted_index.установили, | 195 |
| abstract_inverted_index.абсолютного | 201 |
| abstract_inverted_index.взаимосвязь | 322 |
| abstract_inverted_index.связывающее | 312 |
| abstract_inverted_index.уточнениями | 215 |
| abstract_inverted_index.определения, | 228 |
| abstract_inverted_index.бесконечного | 310 |
| abstract_inverted_index.естественная | 231 |
| abstract_inverted_index.классические | 259 |
| abstract_inverted_index.обеспечивают | 247 |
| abstract_inverted_index.подчёркивают | 320 |
| abstract_inverted_index.последующими | 214 |
| abstract_inverted_index.комбинаторные | 192 |
| abstract_inverted_index.положительных | 234 |
| abstract_inverted_index.представлении | 286 |
| abstract_inverted_index.комбинаторики, | 326 |
| abstract_inverted_index.действительных | 287 |
| abstract_inverted_index.закономерности | 269 |
| abstract_inverted_index.приблизительно | 219 |
| abstract_inverted_index.рассматриваются | 179 |
| abstract_inverted_index.последовательности | 182, 186, 205 |
| abstract_inverted_index.последовательностей | 240 |
| abstract_inverted_index.последовательностей, | 332 |
| abstract_inverted_index.последовательностями, | 272 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |