Generalized Natural Density $\DF(\mathfrak{F}_n)$ of Fibonacci Word Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.10207
This paper explores profound generalizations of the Fibonacci sequence, delving into random Fibonacci sequences, $k$-Fibonacci words, and their combinatorial properties. We established that the $n$-th root of the absolute value of terms in a random Fibonacci sequence converges to $1.13198824\ldots$, a symmetry identity for sums involving Fibonacci words, $\sum_{n=1}^{b} \frac{(-1)^n F_a}{F_n F_{n+a}} = \sum_{n=1}^{a} \frac{(-1)^n F_b}{F_n F_{n+b}}$, and an infinite series identity linking Fibonacci terms to the golden ratio. These findings underscore the intricate interplay between number theory and combinatorics, illuminating the rich structure of Fibonacci-related sequences. We provide, according to this paper, new concepts of density of Fibonacci word.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.10207
- https://arxiv.org/pdf/2504.10207
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415160189
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415160189Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.10207Digital Object Identifier
- Title
-
Generalized Natural Density $\DF(\mathfrak{F}_n)$ of Fibonacci WordWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Jasem Hamoud, Duaa AbdullahList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.10207Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.10207Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.10207Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415160189 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.10207 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.10207 |
| ids.openalex | https://openalex.org/W4415160189 |
| fwci | |
| type | preprint |
| title | Generalized Natural Density $\DF(\mathfrak{F}_n)$ of Fibonacci Word |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12516 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9884999990463257 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Advanced Mathematical Theories and Applications |
| topics[1].id | https://openalex.org/T11428 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9441999793052673 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Advanced Mathematical Identities |
| topics[2].id | https://openalex.org/T11130 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9157999753952026 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Coding theory and cryptography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.10207 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.10207 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.10207 |
| locations[1].id | doi:10.48550/arxiv.2504.10207 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.10207 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5097398935 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-0192-3627 |
| authorships[0].author.display_name | Jasem Hamoud |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hamoud, Jasem |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110257990 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-6855-1729 |
| authorships[1].author.display_name | Duaa Abdullah |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Abdullah, Duaa |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.10207 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Generalized Natural Density $\DF(\mathfrak{F}_n)$ of Fibonacci Word |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12516 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9884999990463257 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Advanced Mathematical Theories and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.10207 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.10207 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.10207 |
| primary_location.id | pmh:oai:arXiv.org:2504.10207 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.10207 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.10207 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 52 |
| abstract_inverted_index.a | 33, 40 |
| abstract_inverted_index.We | 20, 87 |
| abstract_inverted_index.an | 58 |
| abstract_inverted_index.in | 32 |
| abstract_inverted_index.of | 5, 26, 30, 84, 95, 97 |
| abstract_inverted_index.to | 38, 65, 90 |
| abstract_inverted_index.and | 16, 57, 78 |
| abstract_inverted_index.for | 43 |
| abstract_inverted_index.new | 93 |
| abstract_inverted_index.the | 6, 23, 27, 66, 72, 81 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.into | 10 |
| abstract_inverted_index.rich | 82 |
| abstract_inverted_index.root | 25 |
| abstract_inverted_index.sums | 44 |
| abstract_inverted_index.that | 22 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.These | 69 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.terms | 31, 64 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.value | 29 |
| abstract_inverted_index.word. | 99 |
| abstract_inverted_index.$n$-th | 24 |
| abstract_inverted_index.golden | 67 |
| abstract_inverted_index.number | 76 |
| abstract_inverted_index.paper, | 92 |
| abstract_inverted_index.random | 11, 34 |
| abstract_inverted_index.ratio. | 68 |
| abstract_inverted_index.series | 60 |
| abstract_inverted_index.theory | 77 |
| abstract_inverted_index.words, | 15, 47 |
| abstract_inverted_index.between | 75 |
| abstract_inverted_index.delving | 9 |
| abstract_inverted_index.density | 96 |
| abstract_inverted_index.linking | 62 |
| abstract_inverted_index.F_a}{F_n | 50 |
| abstract_inverted_index.F_b}{F_n | 55 |
| abstract_inverted_index.F_{n+a}} | 51 |
| abstract_inverted_index.absolute | 28 |
| abstract_inverted_index.concepts | 94 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.findings | 70 |
| abstract_inverted_index.identity | 42, 61 |
| abstract_inverted_index.infinite | 59 |
| abstract_inverted_index.profound | 3 |
| abstract_inverted_index.provide, | 88 |
| abstract_inverted_index.sequence | 36 |
| abstract_inverted_index.symmetry | 41 |
| abstract_inverted_index.Fibonacci | 7, 12, 35, 46, 63, 98 |
| abstract_inverted_index.according | 89 |
| abstract_inverted_index.converges | 37 |
| abstract_inverted_index.interplay | 74 |
| abstract_inverted_index.intricate | 73 |
| abstract_inverted_index.involving | 45 |
| abstract_inverted_index.sequence, | 8 |
| abstract_inverted_index.structure | 83 |
| abstract_inverted_index.F_{n+b}}$, | 56 |
| abstract_inverted_index.sequences, | 13 |
| abstract_inverted_index.sequences. | 86 |
| abstract_inverted_index.underscore | 71 |
| abstract_inverted_index.established | 21 |
| abstract_inverted_index.properties. | 19 |
| abstract_inverted_index.\frac{(-1)^n | 49, 54 |
| abstract_inverted_index.illuminating | 80 |
| abstract_inverted_index.$k$-Fibonacci | 14 |
| abstract_inverted_index.combinatorial | 18 |
| abstract_inverted_index.\sum_{n=1}^{a} | 53 |
| abstract_inverted_index.combinatorics, | 79 |
| abstract_inverted_index.$\sum_{n=1}^{b} | 48 |
| abstract_inverted_index.generalizations | 4 |
| abstract_inverted_index.Fibonacci-related | 85 |
| abstract_inverted_index.$1.13198824\ldots$, | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |