Generalized Poisson Spatial Autoregressive Modeling of Pneumonia Cases in Children Under Five in Tuban Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18860/cauchy.v10i2.37288
The number of pneumonia cases in children under five in Tuban Regency presents two significant data challenges, namely, overdispersion and spatial dependency. This study aims to develop and apply the Generalized Poisson Spatial Autoregressive (GPSAR) model to address both issues simultaneously. The model was estimated using a MLE-BHHH procedure and validated using 10-fold cross-validation (CV). The results confirm the model's validity and superiority. The GPSAR model outperformed the non-spatial GPR model in terms of goodness-of-fit (AIC: 1301.09 vs. 1312.67) and predictive accuracy (Out-of-Sample CV-RMSE: 8.451 vs. 8.716). Statistically, the structural parameters for spatial lag and overdispersion were highly significant. Two predictor variables, exclusive breastfeeding and complete basic immunization, were also found to be statistically significant factors. This research provides a robust regression framework for spatial count data exhibiting overdispersion and offers new insights into pneumonia case determinants in the region.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.18860/cauchy.v10i2.37288
- https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W7106699817
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106699817Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18860/cauchy.v10i2.37288Digital Object Identifier
- Title
-
Generalized Poisson Spatial Autoregressive Modeling of Pneumonia Cases in Children Under Five in TubanWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Joshua Capri Gunawan Sihombing, Sutikno Sutikno, Achmad ChoiruddinList of authors in order
- Landing page
-
https://doi.org/10.18860/cauchy.v10i2.37288Publisher landing page
- PDF URL
-
https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdfDirect OA link when available
- Concepts
-
Overdispersion, Autoregressive model, Statistics, Mathematics, Generalized linear model, Poisson regression, Poisson distribution, Econometrics, Quasi-likelihood, Regression analysis, Count data, Spatial analysis, Covariate, Distributed lag, Generalized additive model, Pneumonia, Regression, Zero-inflated model, Spatial dependence, Lag, Random effects model, Linear regressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106699817 |
|---|---|
| doi | https://doi.org/10.18860/cauchy.v10i2.37288 |
| ids.doi | https://doi.org/10.18860/cauchy.v10i2.37288 |
| ids.openalex | https://openalex.org/W7106699817 |
| fwci | 0.0 |
| type | article |
| title | Generalized Poisson Spatial Autoregressive Modeling of Pneumonia Cases in Children Under Five in Tuban |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 1232 |
| biblio.first_page | 1219 |
| is_xpac | False |
| apc_list.value | 110 |
| apc_list.currency | USD |
| apc_list.value_usd | 110 |
| apc_paid.value | 110 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 110 |
| concepts[0].id | https://openalex.org/C117236510 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9824811220169067 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7113620 |
| concepts[0].display_name | Overdispersion |
| concepts[1].id | https://openalex.org/C159877910 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6980297565460205 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[1].display_name | Autoregressive model |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6450802683830261 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6302380561828613 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C41587187 |
| concepts[4].level | 2 |
| concepts[4].score | 0.599827229976654 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[4].display_name | Generalized linear model |
| concepts[5].id | https://openalex.org/C73269764 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5967998504638672 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q954529 |
| concepts[5].display_name | Poisson regression |
| concepts[6].id | https://openalex.org/C100906024 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5631443858146667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[6].display_name | Poisson distribution |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.548965334892273 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C91025261 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4540022611618042 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7269460 |
| concepts[8].display_name | Quasi-likelihood |
| concepts[9].id | https://openalex.org/C152877465 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4476180672645569 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[9].display_name | Regression analysis |
| concepts[10].id | https://openalex.org/C33643355 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44322720170021057 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[10].display_name | Count data |
| concepts[11].id | https://openalex.org/C159620131 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42678534984588623 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[11].display_name | Spatial analysis |
| concepts[12].id | https://openalex.org/C119043178 |
| concepts[12].level | 2 |
| concepts[12].score | 0.378706693649292 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[12].display_name | Covariate |
| concepts[13].id | https://openalex.org/C159009313 |
| concepts[13].level | 2 |
| concepts[13].score | 0.36569246649742126 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5283159 |
| concepts[13].display_name | Distributed lag |
| concepts[14].id | https://openalex.org/C194648359 |
| concepts[14].level | 2 |
| concepts[14].score | 0.36384910345077515 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3318054 |
| concepts[14].display_name | Generalized additive model |
| concepts[15].id | https://openalex.org/C2777914695 |
| concepts[15].level | 2 |
| concepts[15].score | 0.35706228017807007 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12192 |
| concepts[15].display_name | Pneumonia |
| concepts[16].id | https://openalex.org/C83546350 |
| concepts[16].level | 2 |
| concepts[16].score | 0.34429049491882324 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[16].display_name | Regression |
| concepts[17].id | https://openalex.org/C88721176 |
| concepts[17].level | 4 |
| concepts[17].score | 0.32745951414108276 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q966010 |
| concepts[17].display_name | Zero-inflated model |
| concepts[18].id | https://openalex.org/C138695830 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3270488679409027 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[18].display_name | Spatial dependence |
| concepts[19].id | https://openalex.org/C75778745 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3072054982185364 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q342626 |
| concepts[19].display_name | Lag |
| concepts[20].id | https://openalex.org/C168743327 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2698003351688385 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[20].display_name | Random effects model |
| concepts[21].id | https://openalex.org/C48921125 |
| concepts[21].level | 2 |
| concepts[21].score | 0.25855332612991333 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[21].display_name | Linear regression |
| keywords[0].id | https://openalex.org/keywords/overdispersion |
| keywords[0].score | 0.9824811220169067 |
| keywords[0].display_name | Overdispersion |
| keywords[1].id | https://openalex.org/keywords/autoregressive-model |
| keywords[1].score | 0.6980297565460205 |
| keywords[1].display_name | Autoregressive model |
| keywords[2].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[2].score | 0.599827229976654 |
| keywords[2].display_name | Generalized linear model |
| keywords[3].id | https://openalex.org/keywords/poisson-regression |
| keywords[3].score | 0.5967998504638672 |
| keywords[3].display_name | Poisson regression |
| keywords[4].id | https://openalex.org/keywords/poisson-distribution |
| keywords[4].score | 0.5631443858146667 |
| keywords[4].display_name | Poisson distribution |
| keywords[5].id | https://openalex.org/keywords/quasi-likelihood |
| keywords[5].score | 0.4540022611618042 |
| keywords[5].display_name | Quasi-likelihood |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.4476180672645569 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/count-data |
| keywords[7].score | 0.44322720170021057 |
| keywords[7].display_name | Count data |
| language | |
| locations[0].id | doi:10.18860/cauchy.v10i2.37288 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738053758 |
| locations[0].source.issn | 2086-0382, 2477-3344 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2086-0382 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | CAUCHY Jurnal Matematika Murni dan Aplikasi |
| locations[0].source.host_organization | https://openalex.org/P4310314932 |
| locations[0].source.host_organization_name | Universitas Islam Negeri Maulana Malik Ibrahim |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310314932 |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CAUCHY: Jurnal Matematika Murni dan Aplikasi |
| locations[0].landing_page_url | https://doi.org/10.18860/cauchy.v10i2.37288 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Joshua Capri Gunawan Sihombing |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[0].affiliations[0].raw_affiliation_string | Institut Teknologi Sepuluh Nopember |
| authorships[0].institutions[0].id | https://openalex.org/I166843116 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/05kbmmt89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua Capri Gunawan Sihombing |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institut Teknologi Sepuluh Nopember |
| authorships[1].author.id | https://openalex.org/A1833207668 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0164-2449 |
| authorships[1].author.display_name | Sutikno Sutikno |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[1].affiliations[0].raw_affiliation_string | Institut Teknologi Sepuluh Nopember |
| authorships[1].institutions[0].id | https://openalex.org/I166843116 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/05kbmmt89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sutikno Sutikno |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institut Teknologi Sepuluh Nopember |
| authorships[2].author.id | https://openalex.org/A2464128355 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2568-2274 |
| authorships[2].author.display_name | Achmad Choiruddin |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[2].affiliations[0].raw_affiliation_string | Institut Teknologi Sepuluh Nopember |
| authorships[2].institutions[0].id | https://openalex.org/I166843116 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/05kbmmt89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Achmad Choiruddin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institut Teknologi Sepuluh Nopember |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | Generalized Poisson Spatial Autoregressive Modeling of Pneumonia Cases in Children Under Five in Tuban |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:08:47.144824 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18860/cauchy.v10i2.37288 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738053758 |
| best_oa_location.source.issn | 2086-0382, 2477-3344 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2086-0382 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | CAUCHY Jurnal Matematika Murni dan Aplikasi |
| best_oa_location.source.host_organization | https://openalex.org/P4310314932 |
| best_oa_location.source.host_organization_name | Universitas Islam Negeri Maulana Malik Ibrahim |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310314932 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CAUCHY: Jurnal Matematika Murni dan Aplikasi |
| best_oa_location.landing_page_url | https://doi.org/10.18860/cauchy.v10i2.37288 |
| primary_location.id | doi:10.18860/cauchy.v10i2.37288 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738053758 |
| primary_location.source.issn | 2086-0382, 2477-3344 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2086-0382 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | CAUCHY Jurnal Matematika Murni dan Aplikasi |
| primary_location.source.host_organization | https://openalex.org/P4310314932 |
| primary_location.source.host_organization_name | Universitas Islam Negeri Maulana Malik Ibrahim |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310314932 |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://ejournal.uin-malang.ac.id/index.php/Math/article/download/37288/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CAUCHY: Jurnal Matematika Murni dan Aplikasi |
| primary_location.landing_page_url | https://doi.org/10.18860/cauchy.v10i2.37288 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 119 |
| abstract_inverted_index.be | 112 |
| abstract_inverted_index.in | 5, 9, 71, 137 |
| abstract_inverted_index.of | 2, 73 |
| abstract_inverted_index.to | 25, 36, 111 |
| abstract_inverted_index.GPR | 69 |
| abstract_inverted_index.The | 0, 41, 55, 63 |
| abstract_inverted_index.Two | 99 |
| abstract_inverted_index.and | 19, 27, 49, 61, 79, 94, 104, 129 |
| abstract_inverted_index.for | 91, 123 |
| abstract_inverted_index.lag | 93 |
| abstract_inverted_index.new | 131 |
| abstract_inverted_index.the | 29, 58, 67, 88, 138 |
| abstract_inverted_index.two | 13 |
| abstract_inverted_index.vs. | 77, 85 |
| abstract_inverted_index.was | 43 |
| abstract_inverted_index.This | 22, 116 |
| abstract_inverted_index.aims | 24 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.both | 38 |
| abstract_inverted_index.case | 135 |
| abstract_inverted_index.data | 15, 126 |
| abstract_inverted_index.five | 8 |
| abstract_inverted_index.into | 133 |
| abstract_inverted_index.were | 96, 108 |
| abstract_inverted_index.(AIC: | 75 |
| abstract_inverted_index.(CV). | 54 |
| abstract_inverted_index.8.451 | 84 |
| abstract_inverted_index.GPSAR | 64 |
| abstract_inverted_index.Tuban | 10 |
| abstract_inverted_index.apply | 28 |
| abstract_inverted_index.basic | 106 |
| abstract_inverted_index.cases | 4 |
| abstract_inverted_index.count | 125 |
| abstract_inverted_index.found | 110 |
| abstract_inverted_index.model | 35, 42, 65, 70 |
| abstract_inverted_index.study | 23 |
| abstract_inverted_index.terms | 72 |
| abstract_inverted_index.under | 7 |
| abstract_inverted_index.using | 45, 51 |
| abstract_inverted_index.highly | 97 |
| abstract_inverted_index.issues | 39 |
| abstract_inverted_index.number | 1 |
| abstract_inverted_index.offers | 130 |
| abstract_inverted_index.robust | 120 |
| abstract_inverted_index.(GPSAR) | 34 |
| abstract_inverted_index.10-fold | 52 |
| abstract_inverted_index.1301.09 | 76 |
| abstract_inverted_index.8.716). | 86 |
| abstract_inverted_index.Poisson | 31 |
| abstract_inverted_index.Regency | 11 |
| abstract_inverted_index.Spatial | 32 |
| abstract_inverted_index.address | 37 |
| abstract_inverted_index.confirm | 57 |
| abstract_inverted_index.develop | 26 |
| abstract_inverted_index.model's | 59 |
| abstract_inverted_index.namely, | 17 |
| abstract_inverted_index.region. | 139 |
| abstract_inverted_index.results | 56 |
| abstract_inverted_index.spatial | 20, 92, 124 |
| abstract_inverted_index.1312.67) | 78 |
| abstract_inverted_index.CV-RMSE: | 83 |
| abstract_inverted_index.MLE-BHHH | 47 |
| abstract_inverted_index.accuracy | 81 |
| abstract_inverted_index.children | 6 |
| abstract_inverted_index.complete | 105 |
| abstract_inverted_index.factors. | 115 |
| abstract_inverted_index.insights | 132 |
| abstract_inverted_index.presents | 12 |
| abstract_inverted_index.provides | 118 |
| abstract_inverted_index.research | 117 |
| abstract_inverted_index.validity | 60 |
| abstract_inverted_index.estimated | 44 |
| abstract_inverted_index.exclusive | 102 |
| abstract_inverted_index.framework | 122 |
| abstract_inverted_index.pneumonia | 3, 134 |
| abstract_inverted_index.predictor | 100 |
| abstract_inverted_index.procedure | 48 |
| abstract_inverted_index.validated | 50 |
| abstract_inverted_index.exhibiting | 127 |
| abstract_inverted_index.parameters | 90 |
| abstract_inverted_index.predictive | 80 |
| abstract_inverted_index.regression | 121 |
| abstract_inverted_index.structural | 89 |
| abstract_inverted_index.variables, | 101 |
| abstract_inverted_index.Generalized | 30 |
| abstract_inverted_index.challenges, | 16 |
| abstract_inverted_index.dependency. | 21 |
| abstract_inverted_index.non-spatial | 68 |
| abstract_inverted_index.significant | 14, 114 |
| abstract_inverted_index.determinants | 136 |
| abstract_inverted_index.outperformed | 66 |
| abstract_inverted_index.significant. | 98 |
| abstract_inverted_index.superiority. | 62 |
| abstract_inverted_index.breastfeeding | 103 |
| abstract_inverted_index.immunization, | 107 |
| abstract_inverted_index.statistically | 113 |
| abstract_inverted_index.(Out-of-Sample | 82 |
| abstract_inverted_index.Autoregressive | 33 |
| abstract_inverted_index.Statistically, | 87 |
| abstract_inverted_index.overdispersion | 18, 95, 128 |
| abstract_inverted_index.goodness-of-fit | 74 |
| abstract_inverted_index.simultaneously. | 40 |
| abstract_inverted_index.cross-validation | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |