Generalized Tube Algebras, Symmetry-Resolved Partition Functions, and Twisted Boundary States Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.02159
We introduce a class of generalized tube algebras which describe how finite, non-invertible global symmetries of bosonic 1+1d QFTs act on operators which sit at the intersection point of a collection of boundaries and interfaces. We develop a 2+1d symmetry topological field theory (SymTFT) picture of boundaries and interfaces which, among other things, allows us to deduce the representation theory of these algebras. In particular, we initiate the study of a character theory, echoing that of finite groups, and demonstrate how many representation-theoretic quantities can be expressed as partition functions of the SymTFT on various backgrounds, which in turn can be evaluated explicitly in terms of generalized half-linking numbers. We use this technology to explain how the torus and annulus partition functions of a 1+1d QFT can be refined with information about its symmetries. We are led to a vast generalization of Ishibashi states in CFT: to any multiplet of conformal boundary conditions which transform into each other under the action of a symmetry, we associate a collection of generalized Ishibashi states, in terms of which the twisted sector boundary states of the theory and all of its orbifolds can be obtained as linear combinations. We derive a generalized Verlinde formula involving the characters of the boundary tube algebra which ensures that our formulas for the twisted sector boundary states respect open-closed duality. Our approach does not rely on rationality or the existence of an extended chiral algebra; however, in the special case of a diagonal RCFT with chiral algebra $V$ and modular tensor category $\mathscr{C}$, our formalism produces explicit closed-form expressions - in terms of the $F$-symbols and $R$-matrices of $\mathscr{C}$, and the characters of $V$ - for the twisted Cardy states, and the torus and annulus partition functions decorated by Verlinde lines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.02159
- https://arxiv.org/pdf/2409.02159
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403159832
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403159832Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.02159Digital Object Identifier
- Title
-
Generalized Tube Algebras, Symmetry-Resolved Partition Functions, and Twisted Boundary StatesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-03Full publication date if available
- Authors
-
Yichul Choi, Brandon C. Rayhaun, Yunqin ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.02159Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.02159Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.02159Direct OA link when available
- Concepts
-
Partition (number theory), Symmetry (geometry), Tube (container), Boundary (topology), Partition function (quantum field theory), Physics, Boundary value problem, Theoretical physics, Mathematical physics, Mathematics, Geometry, Mathematical analysis, Quantum mechanics, Materials science, Combinatorics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403159832 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.02159 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.02159 |
| ids.openalex | https://openalex.org/W4403159832 |
| fwci | |
| type | preprint |
| title | Generalized Tube Algebras, Symmetry-Resolved Partition Functions, and Twisted Boundary States |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10792 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9829999804496765 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Matrix Theory and Algorithms |
| topics[1].id | https://openalex.org/T11673 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9743000268936157 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Advanced Topics in Algebra |
| topics[2].id | https://openalex.org/T11022 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9678000211715698 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Spectral Theory in Mathematical Physics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C42812 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6627789735794067 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[0].display_name | Partition (number theory) |
| concepts[1].id | https://openalex.org/C2779886137 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6403872966766357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21030012 |
| concepts[1].display_name | Symmetry (geometry) |
| concepts[2].id | https://openalex.org/C2777551473 |
| concepts[2].level | 2 |
| concepts[2].score | 0.567152738571167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2093072 |
| concepts[2].display_name | Tube (container) |
| concepts[3].id | https://openalex.org/C62354387 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5365049839019775 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[3].display_name | Boundary (topology) |
| concepts[4].id | https://openalex.org/C2778401447 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5010721683502197 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7140637 |
| concepts[4].display_name | Partition function (quantum field theory) |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4855029582977295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C182310444 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43004217743873596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1332643 |
| concepts[6].display_name | Boundary value problem |
| concepts[7].id | https://openalex.org/C33332235 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3497682809829712 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18362 |
| concepts[7].display_name | Theoretical physics |
| concepts[8].id | https://openalex.org/C37914503 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3486267328262329 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[8].display_name | Mathematical physics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32615426182746887 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32021504640579224 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2577916979789734 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20025357604026794 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1930980682373047 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1405107080936432 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/partition |
| keywords[0].score | 0.6627789735794067 |
| keywords[0].display_name | Partition (number theory) |
| keywords[1].id | https://openalex.org/keywords/symmetry |
| keywords[1].score | 0.6403872966766357 |
| keywords[1].display_name | Symmetry (geometry) |
| keywords[2].id | https://openalex.org/keywords/tube |
| keywords[2].score | 0.567152738571167 |
| keywords[2].display_name | Tube (container) |
| keywords[3].id | https://openalex.org/keywords/boundary |
| keywords[3].score | 0.5365049839019775 |
| keywords[3].display_name | Boundary (topology) |
| keywords[4].id | https://openalex.org/keywords/partition-function |
| keywords[4].score | 0.5010721683502197 |
| keywords[4].display_name | Partition function (quantum field theory) |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.4855029582977295 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/boundary-value-problem |
| keywords[6].score | 0.43004217743873596 |
| keywords[6].display_name | Boundary value problem |
| keywords[7].id | https://openalex.org/keywords/theoretical-physics |
| keywords[7].score | 0.3497682809829712 |
| keywords[7].display_name | Theoretical physics |
| keywords[8].id | https://openalex.org/keywords/mathematical-physics |
| keywords[8].score | 0.3486267328262329 |
| keywords[8].display_name | Mathematical physics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.32615426182746887 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.32021504640579224 |
| keywords[10].display_name | Geometry |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.2577916979789734 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[12].score | 0.20025357604026794 |
| keywords[12].display_name | Quantum mechanics |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.1930980682373047 |
| keywords[13].display_name | Materials science |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.1405107080936432 |
| keywords[14].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.02159 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.02159 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.02159 |
| locations[1].id | doi:10.48550/arxiv.2409.02159 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.02159 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008485426 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8491-1455 |
| authorships[0].author.display_name | Yichul Choi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Choi, Yichul |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020222737 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7242-4481 |
| authorships[1].author.display_name | Brandon C. Rayhaun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rayhaun, Brandon C. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081365010 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0365-8225 |
| authorships[2].author.display_name | Yunqin Zheng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zheng, Yunqin |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.02159 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generalized Tube Algebras, Symmetry-Resolved Partition Functions, and Twisted Boundary States |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10792 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9829999804496765 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Matrix Theory and Algorithms |
| related_works | https://openalex.org/W1611715872, https://openalex.org/W2375955557, https://openalex.org/W2317413863, https://openalex.org/W3161249280, https://openalex.org/W2118558275, https://openalex.org/W2267059662, https://openalex.org/W2364268683, https://openalex.org/W4388411807, https://openalex.org/W4294567731, https://openalex.org/W2808407214 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.02159 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.02159 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.02159 |
| primary_location.id | pmh:oai:arXiv.org:2409.02159 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.02159 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.02159 |
| publication_date | 2024-09-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 262, 277 |
| abstract_inverted_index.a | 2, 29, 37, 70, 123, 138, 162, 166, 197, 244 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.We | 0, 35, 109, 134, 195 |
| abstract_inverted_index.an | 234 |
| abstract_inverted_index.as | 87, 192 |
| abstract_inverted_index.at | 24 |
| abstract_inverted_index.be | 85, 100, 127, 190 |
| abstract_inverted_index.by | 291 |
| abstract_inverted_index.in | 97, 103, 144, 172, 239, 263 |
| abstract_inverted_index.of | 4, 15, 28, 31, 45, 60, 69, 75, 90, 105, 122, 141, 149, 161, 168, 174, 181, 186, 204, 233, 243, 265, 270, 275 |
| abstract_inverted_index.on | 20, 93, 228 |
| abstract_inverted_index.or | 230 |
| abstract_inverted_index.to | 55, 113, 137, 146 |
| abstract_inverted_index.us | 54 |
| abstract_inverted_index.we | 65, 164 |
| abstract_inverted_index.$V$ | 250, 276 |
| abstract_inverted_index.Our | 223 |
| abstract_inverted_index.QFT | 125 |
| abstract_inverted_index.act | 19 |
| abstract_inverted_index.all | 185 |
| abstract_inverted_index.and | 33, 47, 78, 118, 184, 251, 268, 272, 283, 286 |
| abstract_inverted_index.any | 147 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.can | 84, 99, 126, 189 |
| abstract_inverted_index.for | 214, 278 |
| abstract_inverted_index.how | 10, 80, 115 |
| abstract_inverted_index.its | 132, 187 |
| abstract_inverted_index.led | 136 |
| abstract_inverted_index.not | 226 |
| abstract_inverted_index.our | 212, 256 |
| abstract_inverted_index.sit | 23 |
| abstract_inverted_index.the | 25, 57, 67, 91, 116, 159, 176, 182, 202, 205, 215, 231, 240, 266, 273, 279, 284 |
| abstract_inverted_index.use | 110 |
| abstract_inverted_index.1+1d | 17, 124 |
| abstract_inverted_index.2+1d | 38 |
| abstract_inverted_index.CFT: | 145 |
| abstract_inverted_index.QFTs | 18 |
| abstract_inverted_index.RCFT | 246 |
| abstract_inverted_index.case | 242 |
| abstract_inverted_index.does | 225 |
| abstract_inverted_index.each | 156 |
| abstract_inverted_index.into | 155 |
| abstract_inverted_index.many | 81 |
| abstract_inverted_index.rely | 227 |
| abstract_inverted_index.that | 74, 211 |
| abstract_inverted_index.this | 111 |
| abstract_inverted_index.tube | 6, 207 |
| abstract_inverted_index.turn | 98 |
| abstract_inverted_index.vast | 139 |
| abstract_inverted_index.with | 129, 247 |
| abstract_inverted_index.Cardy | 281 |
| abstract_inverted_index.about | 131 |
| abstract_inverted_index.among | 50 |
| abstract_inverted_index.class | 3 |
| abstract_inverted_index.field | 41 |
| abstract_inverted_index.other | 51, 157 |
| abstract_inverted_index.point | 27 |
| abstract_inverted_index.study | 68 |
| abstract_inverted_index.terms | 104, 173, 264 |
| abstract_inverted_index.these | 61 |
| abstract_inverted_index.torus | 117, 285 |
| abstract_inverted_index.under | 158 |
| abstract_inverted_index.which | 8, 22, 96, 153, 175, 209 |
| abstract_inverted_index.SymTFT | 92 |
| abstract_inverted_index.action | 160 |
| abstract_inverted_index.allows | 53 |
| abstract_inverted_index.chiral | 236, 248 |
| abstract_inverted_index.deduce | 56 |
| abstract_inverted_index.derive | 196 |
| abstract_inverted_index.finite | 76 |
| abstract_inverted_index.global | 13 |
| abstract_inverted_index.linear | 193 |
| abstract_inverted_index.lines. | 293 |
| abstract_inverted_index.sector | 178, 217 |
| abstract_inverted_index.states | 143, 180, 219 |
| abstract_inverted_index.tensor | 253 |
| abstract_inverted_index.theory | 42, 59, 183 |
| abstract_inverted_index.which, | 49 |
| abstract_inverted_index.algebra | 208, 249 |
| abstract_inverted_index.annulus | 119, 287 |
| abstract_inverted_index.bosonic | 16 |
| abstract_inverted_index.develop | 36 |
| abstract_inverted_index.echoing | 73 |
| abstract_inverted_index.ensures | 210 |
| abstract_inverted_index.explain | 114 |
| abstract_inverted_index.finite, | 11 |
| abstract_inverted_index.formula | 200 |
| abstract_inverted_index.groups, | 77 |
| abstract_inverted_index.modular | 252 |
| abstract_inverted_index.picture | 44 |
| abstract_inverted_index.refined | 128 |
| abstract_inverted_index.respect | 220 |
| abstract_inverted_index.special | 241 |
| abstract_inverted_index.states, | 171, 282 |
| abstract_inverted_index.theory, | 72 |
| abstract_inverted_index.things, | 52 |
| abstract_inverted_index.twisted | 177, 216, 280 |
| abstract_inverted_index.various | 94 |
| abstract_inverted_index.(SymTFT) | 43 |
| abstract_inverted_index.Verlinde | 199, 292 |
| abstract_inverted_index.algebra; | 237 |
| abstract_inverted_index.algebras | 7 |
| abstract_inverted_index.approach | 224 |
| abstract_inverted_index.boundary | 151, 179, 206, 218 |
| abstract_inverted_index.category | 254 |
| abstract_inverted_index.describe | 9 |
| abstract_inverted_index.diagonal | 245 |
| abstract_inverted_index.duality. | 222 |
| abstract_inverted_index.explicit | 259 |
| abstract_inverted_index.extended | 235 |
| abstract_inverted_index.formulas | 213 |
| abstract_inverted_index.however, | 238 |
| abstract_inverted_index.initiate | 66 |
| abstract_inverted_index.numbers. | 108 |
| abstract_inverted_index.obtained | 191 |
| abstract_inverted_index.produces | 258 |
| abstract_inverted_index.symmetry | 39 |
| abstract_inverted_index.Ishibashi | 142, 170 |
| abstract_inverted_index.algebras. | 62 |
| abstract_inverted_index.associate | 165 |
| abstract_inverted_index.character | 71 |
| abstract_inverted_index.conformal | 150 |
| abstract_inverted_index.decorated | 290 |
| abstract_inverted_index.evaluated | 101 |
| abstract_inverted_index.existence | 232 |
| abstract_inverted_index.expressed | 86 |
| abstract_inverted_index.formalism | 257 |
| abstract_inverted_index.functions | 89, 121, 289 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.involving | 201 |
| abstract_inverted_index.multiplet | 148 |
| abstract_inverted_index.operators | 21 |
| abstract_inverted_index.orbifolds | 188 |
| abstract_inverted_index.partition | 88, 120, 288 |
| abstract_inverted_index.symmetry, | 163 |
| abstract_inverted_index.transform | 154 |
| abstract_inverted_index.boundaries | 32, 46 |
| abstract_inverted_index.characters | 203, 274 |
| abstract_inverted_index.collection | 30, 167 |
| abstract_inverted_index.conditions | 152 |
| abstract_inverted_index.explicitly | 102 |
| abstract_inverted_index.interfaces | 48 |
| abstract_inverted_index.quantities | 83 |
| abstract_inverted_index.symmetries | 14 |
| abstract_inverted_index.technology | 112 |
| abstract_inverted_index.$F$-symbols | 267 |
| abstract_inverted_index.closed-form | 260 |
| abstract_inverted_index.demonstrate | 79 |
| abstract_inverted_index.expressions | 261 |
| abstract_inverted_index.generalized | 5, 106, 169, 198 |
| abstract_inverted_index.information | 130 |
| abstract_inverted_index.interfaces. | 34 |
| abstract_inverted_index.open-closed | 221 |
| abstract_inverted_index.particular, | 64 |
| abstract_inverted_index.rationality | 229 |
| abstract_inverted_index.symmetries. | 133 |
| abstract_inverted_index.topological | 40 |
| abstract_inverted_index.$R$-matrices | 269 |
| abstract_inverted_index.backgrounds, | 95 |
| abstract_inverted_index.half-linking | 107 |
| abstract_inverted_index.intersection | 26 |
| abstract_inverted_index.combinations. | 194 |
| abstract_inverted_index.$\mathscr{C}$, | 255, 271 |
| abstract_inverted_index.generalization | 140 |
| abstract_inverted_index.non-invertible | 12 |
| abstract_inverted_index.representation | 58 |
| abstract_inverted_index.representation-theoretic | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |