Generalized twisted Edwards curves over finite fields and hypergeometric functions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.06199
Let $\mathbb{F}_q$ be a finite field with $q$ elements. For $a,b,c,d,e,f \in \mathbb{F}_q^{\times}$, denote by $C_{a,b,c,d,e,f}$ the family of algebraic curves over $\mathbb{F}_q$ given by the affine equation \begin{align*} C_{a,b,c,d,e,f}:ay^2+bx^2+cxy=d+ex^2y^2+fx^3y. \end{align*} The family of generalized twisted Edwards curves is a subfamily of $C_{a,b,c,d,e,f}$. Let $\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$ denote the number of points on $C_{a,b,c,d,e,f}$ over $\mathbb{F}_q$. In this article, we find certain expressions for $\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$ when $af=ce$. If $c^2-4ab\neq 0$, we express $\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$ in terms of a $p$-adic hypergeometric function $\mathbb{G}(x)$ whose values are explicitly known for all $x\in \mathbb{F}_q$. Next, if $c^2-4ab=0$, we express $\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$ in terms of another $p$-adic hypergeometric function and then relate it to the traces of Frobenius endomorphisms of a family of elliptic curves. Furthermore, using the known values of the hypergeometric functions, we deduce some nice formulas for $\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.06199
- https://arxiv.org/pdf/2412.06199
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405254000
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405254000Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.06199Digital Object Identifier
- Title
-
Generalized twisted Edwards curves over finite fields and hypergeometric functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Rupam Barman, Sipra Mairty, SulakashnaList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.06199Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.06199Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.06199Direct OA link when available
- Concepts
-
Mathematics, Hypergeometric function, Pure mathematics, Hypergeometric distribution, Finite field, Generalized hypergeometric function, Basic hypergeometric series, Confluent hypergeometric function, Discrete mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405254000 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.06199 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.06199 |
| ids.openalex | https://openalex.org/W4405254000 |
| fwci | |
| type | preprint |
| title | Generalized twisted Edwards curves over finite fields and hypergeometric functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11693 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cryptography and Residue Arithmetic |
| topics[1].id | https://openalex.org/T11435 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9602000117301941 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Polynomial and algebraic computation |
| topics[2].id | https://openalex.org/T11245 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9596999883651733 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Numerical Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6400516033172607 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C197320386 |
| concepts[1].level | 2 |
| concepts[1].score | 0.591851532459259 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21028472 |
| concepts[1].display_name | Hypergeometric function |
| concepts[2].id | https://openalex.org/C202444582 |
| concepts[2].level | 1 |
| concepts[2].score | 0.543412983417511 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[2].display_name | Pure mathematics |
| concepts[3].id | https://openalex.org/C176671685 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5399451851844788 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q730600 |
| concepts[3].display_name | Hypergeometric distribution |
| concepts[4].id | https://openalex.org/C77926391 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5176439881324768 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q603880 |
| concepts[4].display_name | Finite field |
| concepts[5].id | https://openalex.org/C158241908 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5091814398765564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q109744257 |
| concepts[5].display_name | Generalized hypergeometric function |
| concepts[6].id | https://openalex.org/C92941272 |
| concepts[6].level | 3 |
| concepts[6].score | 0.46145734190940857 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1062958 |
| concepts[6].display_name | Basic hypergeometric series |
| concepts[7].id | https://openalex.org/C148160416 |
| concepts[7].level | 3 |
| concepts[7].score | 0.44717642664909363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q783948 |
| concepts[7].display_name | Confluent hypergeometric function |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.13617610931396484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.6400516033172607 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/hypergeometric-function |
| keywords[1].score | 0.591851532459259 |
| keywords[1].display_name | Hypergeometric function |
| keywords[2].id | https://openalex.org/keywords/pure-mathematics |
| keywords[2].score | 0.543412983417511 |
| keywords[2].display_name | Pure mathematics |
| keywords[3].id | https://openalex.org/keywords/hypergeometric-distribution |
| keywords[3].score | 0.5399451851844788 |
| keywords[3].display_name | Hypergeometric distribution |
| keywords[4].id | https://openalex.org/keywords/finite-field |
| keywords[4].score | 0.5176439881324768 |
| keywords[4].display_name | Finite field |
| keywords[5].id | https://openalex.org/keywords/generalized-hypergeometric-function |
| keywords[5].score | 0.5091814398765564 |
| keywords[5].display_name | Generalized hypergeometric function |
| keywords[6].id | https://openalex.org/keywords/basic-hypergeometric-series |
| keywords[6].score | 0.46145734190940857 |
| keywords[6].display_name | Basic hypergeometric series |
| keywords[7].id | https://openalex.org/keywords/confluent-hypergeometric-function |
| keywords[7].score | 0.44717642664909363 |
| keywords[7].display_name | Confluent hypergeometric function |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.13617610931396484 |
| keywords[8].display_name | Discrete mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.06199 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.06199 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.06199 |
| locations[1].id | doi:10.48550/arxiv.2412.06199 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.06199 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047126432 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4480-1788 |
| authorships[0].author.display_name | Rupam Barman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Barman, Rupam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115087245 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sipra Mairty |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mairty, Sipra |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038319633 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sulakashna |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sulakashna |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.06199 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generalized twisted Edwards curves over finite fields and hypergeometric functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11693 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cryptography and Residue Arithmetic |
| related_works | https://openalex.org/W3192609840, https://openalex.org/W2003483466, https://openalex.org/W4289106892, https://openalex.org/W3126885930, https://openalex.org/W2905308183, https://openalex.org/W1788447731, https://openalex.org/W2010866598, https://openalex.org/W2325544293, https://openalex.org/W4246122464, https://openalex.org/W2004170801 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.06199 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.06199 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.06199 |
| primary_location.id | pmh:oai:arXiv.org:2412.06199 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.06199 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.06199 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 39, 74, 112 |
| abstract_inverted_index.If | 65 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.be | 2 |
| abstract_inverted_index.by | 14, 24 |
| abstract_inverted_index.if | 89 |
| abstract_inverted_index.in | 71, 94 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.it | 104 |
| abstract_inverted_index.of | 18, 33, 41, 48, 73, 96, 108, 111, 114, 122 |
| abstract_inverted_index.on | 50 |
| abstract_inverted_index.to | 105 |
| abstract_inverted_index.we | 57, 68, 91, 126 |
| abstract_inverted_index.$q$ | 7 |
| abstract_inverted_index.0$, | 67 |
| abstract_inverted_index.For | 9 |
| abstract_inverted_index.Let | 0, 43 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.\in | 11 |
| abstract_inverted_index.all | 85 |
| abstract_inverted_index.and | 101 |
| abstract_inverted_index.are | 81 |
| abstract_inverted_index.for | 61, 84, 131 |
| abstract_inverted_index.the | 16, 25, 46, 106, 119, 123 |
| abstract_inverted_index.find | 58 |
| abstract_inverted_index.nice | 129 |
| abstract_inverted_index.over | 21, 52 |
| abstract_inverted_index.some | 128 |
| abstract_inverted_index.then | 102 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.when | 63 |
| abstract_inverted_index.with | 6 |
| abstract_inverted_index.$x\in | 86 |
| abstract_inverted_index.Next, | 88 |
| abstract_inverted_index.field | 5 |
| abstract_inverted_index.given | 23 |
| abstract_inverted_index.known | 83, 120 |
| abstract_inverted_index.terms | 72, 95 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.whose | 79 |
| abstract_inverted_index.affine | 26 |
| abstract_inverted_index.curves | 20, 37 |
| abstract_inverted_index.deduce | 127 |
| abstract_inverted_index.denote | 13, 45 |
| abstract_inverted_index.family | 17, 32, 113 |
| abstract_inverted_index.finite | 4 |
| abstract_inverted_index.number | 47 |
| abstract_inverted_index.points | 49 |
| abstract_inverted_index.relate | 103 |
| abstract_inverted_index.traces | 107 |
| abstract_inverted_index.values | 80, 121 |
| abstract_inverted_index.Edwards | 36 |
| abstract_inverted_index.another | 97 |
| abstract_inverted_index.certain | 59 |
| abstract_inverted_index.curves. | 116 |
| abstract_inverted_index.express | 69, 92 |
| abstract_inverted_index.twisted | 35 |
| abstract_inverted_index.$af=ce$. | 64 |
| abstract_inverted_index.$p$-adic | 75, 98 |
| abstract_inverted_index.article, | 56 |
| abstract_inverted_index.elliptic | 115 |
| abstract_inverted_index.equation | 27 |
| abstract_inverted_index.formulas | 130 |
| abstract_inverted_index.function | 77, 100 |
| abstract_inverted_index.Frobenius | 109 |
| abstract_inverted_index.algebraic | 19 |
| abstract_inverted_index.elements. | 8 |
| abstract_inverted_index.subfamily | 40 |
| abstract_inverted_index.explicitly | 82 |
| abstract_inverted_index.functions, | 125 |
| abstract_inverted_index.expressions | 60 |
| abstract_inverted_index.generalized | 34 |
| abstract_inverted_index.$a,b,c,d,e,f | 10 |
| abstract_inverted_index.$c^2-4ab=0$, | 90 |
| abstract_inverted_index.$c^2-4ab\neq | 66 |
| abstract_inverted_index.Furthermore, | 117 |
| abstract_inverted_index.\end{align*} | 30 |
| abstract_inverted_index.endomorphisms | 110 |
| abstract_inverted_index.$\mathbb{F}_q$ | 1, 22 |
| abstract_inverted_index.\begin{align*} | 28 |
| abstract_inverted_index.\mathbb{F}_q$. | 87 |
| abstract_inverted_index.hypergeometric | 76, 99, 124 |
| abstract_inverted_index.$\mathbb{F}_q$. | 53 |
| abstract_inverted_index.$\mathbb{G}(x)$ | 78 |
| abstract_inverted_index.$C_{a,b,c,d,e,f}$ | 15, 51 |
| abstract_inverted_index.$C_{a,b,c,d,e,f}$. | 42 |
| abstract_inverted_index.\mathbb{F}_q^{\times}$, | 12 |
| abstract_inverted_index.$\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$ | 44, 62, 70, 93 |
| abstract_inverted_index.$\#C_{a,b,c,d,e,f}(\mathbb{F}_q)$. | 132 |
| abstract_inverted_index.C_{a,b,c,d,e,f}:ay^2+bx^2+cxy=d+ex^2y^2+fx^3y. | 29 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |