Generalized two-part fractional regression with cmp Article Swipe
Researchers who model fractional dependent variables often need to consider whether their data were generated by a two-part process. Two-part models are ideal for modeling two-part processes because they allow us to model the participation and magnitude decisions separately. While community-contributed commands currently facilitate estimation of two-part models, no specialized command exists for fitting two-part models with process dependency. In this article, I describe generalized two-part fractional regression, which allows for dependency between models’ parts. I show how this model can be fit using the community-contributed cmp command (Roodman, 2011, Stata Journal 11: 159–206). I use a data example on the financial leverage of firms to illustrate how cmp can be used to fit generalized two-part fractional regression. Furthermore, I show how to obtain predicted values of the fractional dependent variable and marginal effects that are useful for model interpretation. Finally, I show how to compute model fit statistics and perform the RESET test, which are useful for model evaluation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/1536867x19854017
- https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017
- OA Status
- bronze
- Cited By
- 29
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2954639974
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2954639974Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/1536867x19854017Digital Object Identifier
- Title
-
Generalized two-part fractional regression with cmpWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-01Full publication date if available
- Authors
-
Jesper WulffList of authors in order
- Landing page
-
https://doi.org/10.1177/1536867x19854017Publisher landing page
- PDF URL
-
https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017Direct OA link when available
- Concepts
-
Leverage (statistics), Dependency (UML), Computer science, Regression analysis, Econometrics, Regression, Mathematics, Statistics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 7, 2023: 4, 2022: 6, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2954639974 |
|---|---|
| doi | https://doi.org/10.1177/1536867x19854017 |
| ids.doi | https://doi.org/10.22004/ag.econ.340304 |
| ids.mag | 2954639974 |
| ids.openalex | https://openalex.org/W2954639974 |
| fwci | 1.03325535 |
| type | article |
| title | Generalized two-part fractional regression with cmp |
| biblio.issue | 2 |
| biblio.volume | 19 |
| biblio.last_page | 389 |
| biblio.first_page | 375 |
| topics[0].id | https://openalex.org/T10288 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9180999994277954 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | Fractional Differential Equations Solutions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6566754579544067 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C19768560 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6050914525985718 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[1].display_name | Dependency (UML) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.520477294921875 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49934887886047363 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4748012125492096 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C83546350 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42845430970191956 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[5].display_name | Regression |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39644166827201843 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35001513361930847 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.23219704627990723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.6566754579544067 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/dependency |
| keywords[1].score | 0.6050914525985718 |
| keywords[1].display_name | Dependency (UML) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.520477294921875 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.49934887886047363 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.4748012125492096 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/regression |
| keywords[5].score | 0.42845430970191956 |
| keywords[5].display_name | Regression |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.39644166827201843 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.35001513361930847 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.23219704627990723 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1177/1536867x19854017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S88220793 |
| locations[0].source.issn | 1536-867X, 1536-8734 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1536-867X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Stata Journal Promoting communications on statistics and Stata |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | |
| locations[0].pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Stata Journal: Promoting communications on statistics and Stata |
| locations[0].landing_page_url | https://doi.org/10.1177/1536867x19854017 |
| locations[1].id | pmh:oai:ageconsearch.umn.edu:340304 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401616 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | AgEcon Search (University of Minnesota, USA) |
| locations[1].source.host_organization | https://openalex.org/I4210120349 |
| locations[1].source.host_organization_name | University of Minnesota Rochester |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210120349 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | http://ageconsearch.umn.edu/record/340304 |
| locations[1].landing_page_url | http://ageconsearch.umn.edu/record/340304 |
| locations[2].id | pmh:oai:pure.atira.dk:openaire/9007cc6d-3250-4a1f-8181-ca4cf6f2ca11 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400216 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Research Portal (King's College London) |
| locations[2].source.host_organization | https://openalex.org/I183935753 |
| locations[2].source.host_organization_name | King's College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Wulff, J 2019, 'Generalized two-part fractional regression with cmp', Stata Journal, vol. 19, no. 2, pp. 375–389. https://doi.org/10.1177/1536867X19854017 |
| locations[2].landing_page_url | https://pure.au.dk/portal/en/publications/9007cc6d-3250-4a1f-8181-ca4cf6f2ca11 |
| locations[3].id | doi:10.22004/ag.econ.340304 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401616 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | AgEcon Search (University of Minnesota, USA) |
| locations[3].source.host_organization | https://openalex.org/I4210120349 |
| locations[3].source.host_organization_name | University of Minnesota Rochester |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210120349 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.22004/ag.econ.340304 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5017450391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7976-0939 |
| authorships[0].author.display_name | Jesper Wulff |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[0].affiliations[0].raw_affiliation_string | Aarhus University, Aarhus, Denmark. |
| authorships[0].institutions[0].id | https://openalex.org/I204337017 |
| authorships[0].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Aarhus University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jesper N. Wulff |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Aarhus University, Aarhus, Denmark. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generalized two-part fractional regression with cmp |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10288 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9180999994277954 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | Fractional Differential Equations Solutions |
| related_works | https://openalex.org/W3128025644, https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W1969346022, https://openalex.org/W2034959125 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1177/1536867x19854017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S88220793 |
| best_oa_location.source.issn | 1536-867X, 1536-8734 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1536-867X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The Stata Journal Promoting communications on statistics and Stata |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Stata Journal: Promoting communications on statistics and Stata |
| best_oa_location.landing_page_url | https://doi.org/10.1177/1536867x19854017 |
| primary_location.id | doi:10.1177/1536867x19854017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S88220793 |
| primary_location.source.issn | 1536-867X, 1536-8734 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1536-867X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Stata Journal Promoting communications on statistics and Stata |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | |
| primary_location.pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1536867X19854017 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Stata Journal: Promoting communications on statistics and Stata |
| primary_location.landing_page_url | https://doi.org/10.1177/1536867x19854017 |
| publication_date | 2019-06-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2824388830, https://openalex.org/W263154455, https://openalex.org/W1971278120, https://openalex.org/W1568764729, https://openalex.org/W2079923236, https://openalex.org/W3122896559, https://openalex.org/W1518672108, https://openalex.org/W2109495844, https://openalex.org/W1986952199, https://openalex.org/W953353200, https://openalex.org/W3123231910, https://openalex.org/W2037461127, https://openalex.org/W2342891472, https://openalex.org/W2327243805, https://openalex.org/W1592576206, https://openalex.org/W3125601827 |
| referenced_works_count | 16 |
| abstract_inverted_index.I | 62, 75, 94, 119, 141 |
| abstract_inverted_index.a | 16, 96 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.be | 81, 110 |
| abstract_inverted_index.by | 15 |
| abstract_inverted_index.no | 48 |
| abstract_inverted_index.of | 45, 103, 126 |
| abstract_inverted_index.on | 99 |
| abstract_inverted_index.to | 8, 31, 105, 112, 122, 144 |
| abstract_inverted_index.us | 30 |
| abstract_inverted_index.11: | 92 |
| abstract_inverted_index.and | 35, 131, 149 |
| abstract_inverted_index.are | 21, 135, 155 |
| abstract_inverted_index.can | 80, 109 |
| abstract_inverted_index.cmp | 86, 108 |
| abstract_inverted_index.fit | 82, 113, 147 |
| abstract_inverted_index.for | 23, 52, 70, 137, 157 |
| abstract_inverted_index.how | 77, 107, 121, 143 |
| abstract_inverted_index.the | 33, 84, 100, 127, 151 |
| abstract_inverted_index.use | 95 |
| abstract_inverted_index.who | 1 |
| abstract_inverted_index.data | 12, 97 |
| abstract_inverted_index.need | 7 |
| abstract_inverted_index.show | 76, 120, 142 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.they | 28 |
| abstract_inverted_index.this | 60, 78 |
| abstract_inverted_index.used | 111 |
| abstract_inverted_index.were | 13 |
| abstract_inverted_index.with | 56 |
| abstract_inverted_index.2011, | 89 |
| abstract_inverted_index.RESET | 152 |
| abstract_inverted_index.Stata | 90 |
| abstract_inverted_index.While | 39 |
| abstract_inverted_index.allow | 29 |
| abstract_inverted_index.firms | 104 |
| abstract_inverted_index.ideal | 22 |
| abstract_inverted_index.model | 2, 32, 79, 138, 146, 158 |
| abstract_inverted_index.often | 6 |
| abstract_inverted_index.test, | 153 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.using | 83 |
| abstract_inverted_index.which | 68, 154 |
| abstract_inverted_index.allows | 69 |
| abstract_inverted_index.exists | 51 |
| abstract_inverted_index.models | 20, 55 |
| abstract_inverted_index.obtain | 123 |
| abstract_inverted_index.parts. | 74 |
| abstract_inverted_index.useful | 136, 156 |
| abstract_inverted_index.values | 125 |
| abstract_inverted_index.Journal | 91 |
| abstract_inverted_index.because | 27 |
| abstract_inverted_index.between | 72 |
| abstract_inverted_index.command | 50, 87 |
| abstract_inverted_index.compute | 145 |
| abstract_inverted_index.effects | 133 |
| abstract_inverted_index.example | 98 |
| abstract_inverted_index.fitting | 53 |
| abstract_inverted_index.models, | 47 |
| abstract_inverted_index.perform | 150 |
| abstract_inverted_index.process | 57 |
| abstract_inverted_index.whether | 10 |
| abstract_inverted_index.Finally, | 140 |
| abstract_inverted_index.Two-part | 19 |
| abstract_inverted_index.article, | 61 |
| abstract_inverted_index.commands | 41 |
| abstract_inverted_index.consider | 9 |
| abstract_inverted_index.describe | 63 |
| abstract_inverted_index.leverage | 102 |
| abstract_inverted_index.marginal | 132 |
| abstract_inverted_index.modeling | 24 |
| abstract_inverted_index.process. | 18 |
| abstract_inverted_index.two-part | 17, 25, 46, 54, 65, 115 |
| abstract_inverted_index.variable | 130 |
| abstract_inverted_index.(Roodman, | 88 |
| abstract_inverted_index.currently | 42 |
| abstract_inverted_index.decisions | 37 |
| abstract_inverted_index.dependent | 4, 129 |
| abstract_inverted_index.financial | 101 |
| abstract_inverted_index.generated | 14 |
| abstract_inverted_index.magnitude | 36 |
| abstract_inverted_index.models’ | 73 |
| abstract_inverted_index.predicted | 124 |
| abstract_inverted_index.processes | 26 |
| abstract_inverted_index.variables | 5 |
| abstract_inverted_index.dependency | 71 |
| abstract_inverted_index.estimation | 44 |
| abstract_inverted_index.facilitate | 43 |
| abstract_inverted_index.fractional | 3, 66, 116, 128 |
| abstract_inverted_index.illustrate | 106 |
| abstract_inverted_index.statistics | 148 |
| abstract_inverted_index.159–206). | 93 |
| abstract_inverted_index.Researchers | 0 |
| abstract_inverted_index.dependency. | 58 |
| abstract_inverted_index.evaluation. | 159 |
| abstract_inverted_index.generalized | 64, 114 |
| abstract_inverted_index.regression, | 67 |
| abstract_inverted_index.regression. | 117 |
| abstract_inverted_index.separately. | 38 |
| abstract_inverted_index.specialized | 49 |
| abstract_inverted_index.Furthermore, | 118 |
| abstract_inverted_index.participation | 34 |
| abstract_inverted_index.interpretation. | 139 |
| abstract_inverted_index.community-contributed | 40, 85 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5017450391 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I204337017 |
| citation_normalized_percentile.value | 0.75481504 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |