Generating a Doppelganger Graph: Resembling but Distinct Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2101.09593
Deep generative models, since their inception, have become increasingly more capable of generating novel and perceptually realistic signals (e.g., images and sound waves). With the emergence of deep models for graph structured data, natural interests seek extensions of these generative models for graphs. Successful extensions were seen recently in the case of learning from a collection of graphs (e.g., protein data banks), but the learning from a single graph has been largely under explored. The latter case, however, is important in practice. For example, graphs in financial and healthcare systems contain so much confidential information that their public accessibility is nearly impossible, but open science in these fields can only advance when similar data are available for benchmarking. In this work, we propose an approach to generating a doppelganger graph that resembles a given one in many graph properties but nonetheless can hardly be used to reverse engineer the original one, in the sense of a near zero edge overlap. The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms. Through comparison with several graph generative models (either parameterized by neural networks or not), we demonstrate that our result barely reproduces the given graph but closely matches its properties. We further show that downstream tasks, such as node classification, on the generated graphs reach similar performance to the use of the original ones.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2101.09593
- https://arxiv.org/pdf/2101.09593
- OA Status
- green
- Cited By
- 1
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3121397452
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3121397452Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2101.09593Digital Object Identifier
- Title
-
Generating a Doppelganger Graph: Resembling but DistinctWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-23Full publication date if available
- Authors
-
Yuliang Ji, Ru Huang, Jie Chen, Yuanzhe XiList of authors in order
- Landing page
-
https://arxiv.org/abs/2101.09593Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2101.09593Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2101.09593Direct OA link when available
- Concepts
-
Computer science, Generative grammar, Theoretical computer science, Parameterized complexity, Null model, Graph, Generative model, Artificial intelligence, Algorithm, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3121397452 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2101.09593 |
| ids.doi | https://doi.org/10.48550/arxiv.2101.09593 |
| ids.mag | 3121397452 |
| ids.openalex | https://openalex.org/W3121397452 |
| fwci | |
| type | preprint |
| title | Generating a Doppelganger Graph: Resembling but Distinct |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9873999953269958 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10064 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7095514535903931 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6134918928146362 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C80444323 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5964173078536987 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[2].display_name | Theoretical computer science |
| concepts[3].id | https://openalex.org/C165464430 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5299281477928162 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[3].display_name | Parameterized complexity |
| concepts[4].id | https://openalex.org/C36382193 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4713045060634613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7068966 |
| concepts[4].display_name | Null model |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4682149887084961 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C167966045 |
| concepts[6].level | 3 |
| concepts[6].score | 0.41738465428352356 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[6].display_name | Generative model |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3912014961242676 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24895530939102173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12393832206726074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7095514535903931 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.6134918928146362 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[2].score | 0.5964173078536987 |
| keywords[2].display_name | Theoretical computer science |
| keywords[3].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[3].score | 0.5299281477928162 |
| keywords[3].display_name | Parameterized complexity |
| keywords[4].id | https://openalex.org/keywords/null-model |
| keywords[4].score | 0.4713045060634613 |
| keywords[4].display_name | Null model |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.4682149887084961 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/generative-model |
| keywords[6].score | 0.41738465428352356 |
| keywords[6].display_name | Generative model |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3912014961242676 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.24895530939102173 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.12393832206726074 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2101.09593 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2101.09593 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2101.09593 |
| locations[1].id | doi:10.48550/arxiv.2101.09593 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2101.09593 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001057943 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5498-6165 |
| authorships[0].author.display_name | Yuliang Ji |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuliang Ji |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012603707 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7545-0987 |
| authorships[1].author.display_name | Ru Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ru Huang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100332933 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5625-5729 |
| authorships[2].author.display_name | Jie Chen |
| authorships[2].affiliations[0].raw_affiliation_string | IBM |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jie Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM |
| authorships[3].author.id | https://openalex.org/A5056635728 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[3].author.display_name | Yuanzhe Xi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yuanzhe Xi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2101.09593 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating a Doppelganger Graph: Resembling but Distinct |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W4238433571, https://openalex.org/W3174044702, https://openalex.org/W2967848559, https://openalex.org/W4299831724 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2101.09593 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2101.09593 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2101.09593 |
| primary_location.id | pmh:oai:arXiv.org:2101.09593 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2101.09593 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2101.09593 |
| publication_date | 2021-01-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2891814056, https://openalex.org/W2949382160, https://openalex.org/W2948056114, https://openalex.org/W2294347342, https://openalex.org/W2750894112, https://openalex.org/W2112090702, https://openalex.org/W2032005951, https://openalex.org/W2008620264, https://openalex.org/W2965374788, https://openalex.org/W2806351858, https://openalex.org/W2962756421, https://openalex.org/W2119998616, https://openalex.org/W3105705953, https://openalex.org/W2903199860, https://openalex.org/W2963819570, https://openalex.org/W3104097132, https://openalex.org/W2964108670, https://openalex.org/W2099471712, https://openalex.org/W2067247412, https://openalex.org/W2962879692, https://openalex.org/W2950898568, https://openalex.org/W2963858333, https://openalex.org/W2806115886, https://openalex.org/W2554952599, https://openalex.org/W2962711740, https://openalex.org/W2905110430, https://openalex.org/W2952254971, https://openalex.org/W2739748921, https://openalex.org/W2962767366, https://openalex.org/W2964222296, https://openalex.org/W2963636093, https://openalex.org/W2153959628, https://openalex.org/W2162630660, https://openalex.org/W2044881936, https://openalex.org/W2786103815, https://openalex.org/W2964271403, https://openalex.org/W2076736556, https://openalex.org/W2962937159, https://openalex.org/W3041685368, https://openalex.org/W2624431344, https://openalex.org/W1959608418, https://openalex.org/W2970709315, https://openalex.org/W2964015378 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 54, 66, 127, 132, 155 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.We | 205 |
| abstract_inverted_index.an | 123, 163 |
| abstract_inverted_index.as | 212 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.by | 185 |
| abstract_inverted_index.in | 48, 80, 85, 105, 135, 151 |
| abstract_inverted_index.is | 78, 99, 162 |
| abstract_inverted_index.of | 11, 26, 37, 51, 56, 154, 165, 225 |
| abstract_inverted_index.on | 215 |
| abstract_inverted_index.or | 188 |
| abstract_inverted_index.so | 91 |
| abstract_inverted_index.to | 125, 145, 222 |
| abstract_inverted_index.we | 121, 190 |
| abstract_inverted_index.For | 82 |
| abstract_inverted_index.The | 74, 160 |
| abstract_inverted_index.and | 14, 20, 87, 172 |
| abstract_inverted_index.are | 114 |
| abstract_inverted_index.but | 62, 102, 139, 200 |
| abstract_inverted_index.can | 108, 141 |
| abstract_inverted_index.for | 29, 41, 116 |
| abstract_inverted_index.has | 69 |
| abstract_inverted_index.its | 203 |
| abstract_inverted_index.one | 134 |
| abstract_inverted_index.our | 193 |
| abstract_inverted_index.the | 24, 49, 63, 148, 152, 197, 216, 223, 226 |
| abstract_inverted_index.use | 224 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.With | 23 |
| abstract_inverted_index.been | 70 |
| abstract_inverted_index.case | 50 |
| abstract_inverted_index.data | 60, 113 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.edge | 158 |
| abstract_inverted_index.from | 53, 65 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.many | 136 |
| abstract_inverted_index.more | 9 |
| abstract_inverted_index.much | 92 |
| abstract_inverted_index.near | 156 |
| abstract_inverted_index.node | 213 |
| abstract_inverted_index.one, | 150 |
| abstract_inverted_index.only | 109 |
| abstract_inverted_index.open | 103 |
| abstract_inverted_index.seek | 35 |
| abstract_inverted_index.seen | 46 |
| abstract_inverted_index.show | 207 |
| abstract_inverted_index.such | 211 |
| abstract_inverted_index.that | 95, 130, 192, 208 |
| abstract_inverted_index.this | 119 |
| abstract_inverted_index.used | 144 |
| abstract_inverted_index.were | 45 |
| abstract_inverted_index.when | 111 |
| abstract_inverted_index.with | 178 |
| abstract_inverted_index.zero | 157 |
| abstract_inverted_index.case, | 76 |
| abstract_inverted_index.data, | 32 |
| abstract_inverted_index.given | 133, 198 |
| abstract_inverted_index.graph | 30, 68, 129, 137, 166, 173, 180, 199 |
| abstract_inverted_index.not), | 189 |
| abstract_inverted_index.novel | 13 |
| abstract_inverted_index.ones. | 228 |
| abstract_inverted_index.reach | 219 |
| abstract_inverted_index.sense | 153 |
| abstract_inverted_index.since | 3 |
| abstract_inverted_index.sound | 21 |
| abstract_inverted_index.their | 4, 96 |
| abstract_inverted_index.these | 38, 106 |
| abstract_inverted_index.under | 72 |
| abstract_inverted_index.work, | 120 |
| abstract_inverted_index.(e.g., | 18, 58 |
| abstract_inverted_index.barely | 195 |
| abstract_inverted_index.become | 7 |
| abstract_inverted_index.fields | 107 |
| abstract_inverted_index.graphs | 57, 84, 218 |
| abstract_inverted_index.hardly | 142 |
| abstract_inverted_index.images | 19 |
| abstract_inverted_index.latter | 75 |
| abstract_inverted_index.models | 28, 40, 182 |
| abstract_inverted_index.nearly | 100 |
| abstract_inverted_index.neural | 186 |
| abstract_inverted_index.public | 97 |
| abstract_inverted_index.result | 194 |
| abstract_inverted_index.single | 67 |
| abstract_inverted_index.tasks, | 210 |
| abstract_inverted_index.(either | 183 |
| abstract_inverted_index.Through | 176 |
| abstract_inverted_index.advance | 110 |
| abstract_inverted_index.banks), | 61 |
| abstract_inverted_index.capable | 10 |
| abstract_inverted_index.closely | 201 |
| abstract_inverted_index.contain | 90 |
| abstract_inverted_index.further | 206 |
| abstract_inverted_index.graphs. | 42 |
| abstract_inverted_index.largely | 71 |
| abstract_inverted_index.matches | 202 |
| abstract_inverted_index.models, | 2 |
| abstract_inverted_index.natural | 33 |
| abstract_inverted_index.propose | 122 |
| abstract_inverted_index.protein | 59 |
| abstract_inverted_index.reverse | 146 |
| abstract_inverted_index.science | 104 |
| abstract_inverted_index.several | 179 |
| abstract_inverted_index.signals | 17 |
| abstract_inverted_index.similar | 112, 220 |
| abstract_inverted_index.systems | 89 |
| abstract_inverted_index.waves). | 22 |
| abstract_inverted_index.approach | 124, 161 |
| abstract_inverted_index.engineer | 147 |
| abstract_inverted_index.example, | 83 |
| abstract_inverted_index.however, | 77 |
| abstract_inverted_index.learning | 52, 64 |
| abstract_inverted_index.networks | 187 |
| abstract_inverted_index.original | 149, 227 |
| abstract_inverted_index.overlap. | 159 |
| abstract_inverted_index.recently | 47 |
| abstract_inverted_index.available | 115 |
| abstract_inverted_index.emergence | 25 |
| abstract_inverted_index.explored. | 73 |
| abstract_inverted_index.financial | 86 |
| abstract_inverted_index.generated | 217 |
| abstract_inverted_index.important | 79 |
| abstract_inverted_index.interests | 34 |
| abstract_inverted_index.learning, | 168 |
| abstract_inverted_index.networks, | 171 |
| abstract_inverted_index.practice. | 81 |
| abstract_inverted_index.realistic | 16 |
| abstract_inverted_index.resembles | 131 |
| abstract_inverted_index.Successful | 43 |
| abstract_inverted_index.collection | 55 |
| abstract_inverted_index.comparison | 177 |
| abstract_inverted_index.downstream | 209 |
| abstract_inverted_index.extensions | 36, 44 |
| abstract_inverted_index.generating | 12, 126 |
| abstract_inverted_index.generative | 1, 39, 169, 181 |
| abstract_inverted_index.healthcare | 88 |
| abstract_inverted_index.inception, | 5 |
| abstract_inverted_index.properties | 138 |
| abstract_inverted_index.reproduces | 196 |
| abstract_inverted_index.structured | 31 |
| abstract_inverted_index.adversarial | 170 |
| abstract_inverted_index.algorithms. | 175 |
| abstract_inverted_index.demonstrate | 191 |
| abstract_inverted_index.impossible, | 101 |
| abstract_inverted_index.information | 94 |
| abstract_inverted_index.nonetheless | 140 |
| abstract_inverted_index.performance | 221 |
| abstract_inverted_index.properties. | 204 |
| abstract_inverted_index.realization | 174 |
| abstract_inverted_index.confidential | 93 |
| abstract_inverted_index.doppelganger | 128 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.perceptually | 15 |
| abstract_inverted_index.accessibility | 98 |
| abstract_inverted_index.benchmarking. | 117 |
| abstract_inverted_index.orchestration | 164 |
| abstract_inverted_index.parameterized | 184 |
| abstract_inverted_index.representation | 167 |
| abstract_inverted_index.classification, | 214 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |