Generating a Hazard Map of Dynamic Objects Using Lidar Mobile Mapping Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.14358/pers.82.12.967
One of the hardest problems for future self-driving cars is to predict hazardous situations involving pedestrians and cyclists. Human drivers solve this problem typically by having a deeper understanding of the scene. The technical equivalent of this is to provide a hazard map, which serves as a prior for self-driving cars, enabling them to adjust driving speed and processing thresholds. In this paper, we present a method to derive such a hazard map using lidar mobile mapping. Pedestrians and cyclists are obtained from a sequence of point clouds by segmentation and classification. Their locations are then accumulated in a grid map, which serves as a “heat map” for possible hazardous situations. To demonstrate our approach, we generated a map using lidar mobile mapping, obtained by twelve measurement campaigns in Hanover (Germany). Our results show different outcomes for the city center, residential areas, busy roads, and road junctions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14358/pers.82.12.967
- OA Status
- hybrid
- Cited By
- 3
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2560290037
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2560290037Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14358/pers.82.12.967Digital Object Identifier
- Title
-
Generating a Hazard Map of Dynamic Objects Using Lidar Mobile MappingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-12-01Full publication date if available
- Authors
-
Alexander Schlichting, Claus BrennerList of authors in order
- Landing page
-
https://doi.org/10.14358/pers.82.12.967Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.14358/pers.82.12.967Direct OA link when available
- Concepts
-
Lidar, Mobile mapping, Cartography, Geography, Hazard map, Remote sensing, Hazard, Computer science, Computer vision, Point cloud, Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2560290037 |
|---|---|
| doi | https://doi.org/10.14358/pers.82.12.967 |
| ids.doi | https://doi.org/10.14358/pers.82.12.967 |
| ids.mag | 2560290037 |
| ids.openalex | https://openalex.org/W2560290037 |
| fwci | 0.178053 |
| type | article |
| title | Generating a Hazard Map of Dynamic Objects Using Lidar Mobile Mapping |
| biblio.issue | 12 |
| biblio.volume | 82 |
| biblio.last_page | 972 |
| biblio.first_page | 967 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7240133881568909 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C2776821279 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6301949620246887 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2293902 |
| concepts[1].display_name | Mobile mapping |
| concepts[2].id | https://openalex.org/C58640448 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5629028677940369 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[2].display_name | Cartography |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5271125435829163 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C2775903177 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5123318433761597 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5687679 |
| concepts[4].display_name | Hazard map |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4789572060108185 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C49261128 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4312487244606018 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1132455 |
| concepts[6].display_name | Hazard |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4053581655025482 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2652175724506378 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C131979681 |
| concepts[9].level | 2 |
| concepts[9].score | 0.08146852254867554 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[9].display_name | Point cloud |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C178790620 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[11].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.7240133881568909 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/mobile-mapping |
| keywords[1].score | 0.6301949620246887 |
| keywords[1].display_name | Mobile mapping |
| keywords[2].id | https://openalex.org/keywords/cartography |
| keywords[2].score | 0.5629028677940369 |
| keywords[2].display_name | Cartography |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.5271125435829163 |
| keywords[3].display_name | Geography |
| keywords[4].id | https://openalex.org/keywords/hazard-map |
| keywords[4].score | 0.5123318433761597 |
| keywords[4].display_name | Hazard map |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.4789572060108185 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/hazard |
| keywords[6].score | 0.4312487244606018 |
| keywords[6].display_name | Hazard |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4053581655025482 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.2652175724506378 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/point-cloud |
| keywords[9].score | 0.08146852254867554 |
| keywords[9].display_name | Point cloud |
| language | en |
| locations[0].id | doi:10.14358/pers.82.12.967 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S99003644 |
| locations[0].source.issn | 0099-1112, 2374-8079 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0099-1112 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Photogrammetric Engineering & Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4320800734 |
| locations[0].source.host_organization_name | American Society for Photogrammetry and Remote Sensing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800734 |
| locations[0].source.host_organization_lineage_names | American Society for Photogrammetry and Remote Sensing |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Photogrammetric Engineering & Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.14358/pers.82.12.967 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5017361356 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alexander Schlichting |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[0].affiliations[0].raw_affiliation_string | Leibniz Universität Hannover, Institute of Cartography and Geoinformatics, Appelstr. 9A, 30167 Hannover, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I114112103 |
| authorships[0].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Leibniz University Hannover |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexander Schlichting |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Leibniz Universität Hannover, Institute of Cartography and Geoinformatics, Appelstr. 9A, 30167 Hannover, Germany |
| authorships[1].author.id | https://openalex.org/A5016827109 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6459-0682 |
| authorships[1].author.display_name | Claus Brenner |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[1].affiliations[0].raw_affiliation_string | Leibniz Universität Hannover, Institute of Cartography and Geoinformatics, Appelstr. 9A, 30167 Hannover, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I114112103 |
| authorships[1].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Leibniz University Hannover |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Claus Brenner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Leibniz Universität Hannover, Institute of Cartography and Geoinformatics, Appelstr. 9A, 30167 Hannover, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.14358/pers.82.12.967 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating a Hazard Map of Dynamic Objects Using Lidar Mobile Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W1546369479, https://openalex.org/W2560290037, https://openalex.org/W2334034597, https://openalex.org/W117302946, https://openalex.org/W2972471089, https://openalex.org/W2507448697, https://openalex.org/W193513561, https://openalex.org/W3117450430, https://openalex.org/W3129744855, https://openalex.org/W2049084906 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14358/pers.82.12.967 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S99003644 |
| best_oa_location.source.issn | 0099-1112, 2374-8079 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0099-1112 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Photogrammetric Engineering & Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4320800734 |
| best_oa_location.source.host_organization_name | American Society for Photogrammetry and Remote Sensing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800734 |
| best_oa_location.source.host_organization_lineage_names | American Society for Photogrammetry and Remote Sensing |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Photogrammetric Engineering & Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.14358/pers.82.12.967 |
| primary_location.id | doi:10.14358/pers.82.12.967 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S99003644 |
| primary_location.source.issn | 0099-1112, 2374-8079 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0099-1112 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Photogrammetric Engineering & Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4320800734 |
| primary_location.source.host_organization_name | American Society for Photogrammetry and Remote Sensing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800734 |
| primary_location.source.host_organization_lineage_names | American Society for Photogrammetry and Remote Sensing |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Photogrammetric Engineering & Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.14358/pers.82.12.967 |
| publication_date | 2016-12-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2111957821, https://openalex.org/W2096579040, https://openalex.org/W2102691275, https://openalex.org/W2016936259, https://openalex.org/W2911964244, https://openalex.org/W1897109811, https://openalex.org/W3210232381, https://openalex.org/W1578975615, https://openalex.org/W2070862194 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 29, 43, 49, 69, 74, 87, 102, 108, 121 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.To | 115 |
| abstract_inverted_index.as | 48, 107 |
| abstract_inverted_index.by | 27, 92, 128 |
| abstract_inverted_index.in | 101, 132 |
| abstract_inverted_index.is | 12, 40 |
| abstract_inverted_index.of | 4, 32, 38, 89 |
| abstract_inverted_index.to | 13, 41, 56, 71 |
| abstract_inverted_index.we | 67, 119 |
| abstract_inverted_index.One | 3 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.The | 35 |
| abstract_inverted_index.and | 19, 60, 82, 94, 148 |
| abstract_inverted_index.are | 84, 98 |
| abstract_inverted_index.for | 8, 51, 111, 140 |
| abstract_inverted_index.map | 76, 122 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 5, 33, 141 |
| abstract_inverted_index.busy | 146 |
| abstract_inverted_index.cars | 11 |
| abstract_inverted_index.city | 142 |
| abstract_inverted_index.from | 86 |
| abstract_inverted_index.grid | 103 |
| abstract_inverted_index.map, | 45, 104 |
| abstract_inverted_index.road | 149 |
| abstract_inverted_index.show | 137 |
| abstract_inverted_index.such | 73 |
| abstract_inverted_index.them | 55 |
| abstract_inverted_index.then | 99 |
| abstract_inverted_index.this | 24, 39, 65 |
| abstract_inverted_index.Human | 21 |
| abstract_inverted_index.Their | 96 |
| abstract_inverted_index.cars, | 53 |
| abstract_inverted_index.lidar | 78, 124 |
| abstract_inverted_index.point | 90 |
| abstract_inverted_index.prior | 50 |
| abstract_inverted_index.solve | 23 |
| abstract_inverted_index.speed | 59 |
| abstract_inverted_index.using | 77, 123 |
| abstract_inverted_index.which | 46, 105 |
| abstract_inverted_index.adjust | 57 |
| abstract_inverted_index.areas, | 145 |
| abstract_inverted_index.clouds | 91 |
| abstract_inverted_index.deeper | 30 |
| abstract_inverted_index.derive | 72 |
| abstract_inverted_index.future | 9 |
| abstract_inverted_index.having | 28 |
| abstract_inverted_index.hazard | 44, 75 |
| abstract_inverted_index.map” | 110 |
| abstract_inverted_index.method | 70 |
| abstract_inverted_index.mobile | 79, 125 |
| abstract_inverted_index.paper, | 66 |
| abstract_inverted_index.roads, | 147 |
| abstract_inverted_index.scene. | 34 |
| abstract_inverted_index.serves | 47, 106 |
| abstract_inverted_index.twelve | 129 |
| abstract_inverted_index.Hanover | 133 |
| abstract_inverted_index.center, | 143 |
| abstract_inverted_index.drivers | 22 |
| abstract_inverted_index.driving | 58 |
| abstract_inverted_index.hardest | 6 |
| abstract_inverted_index.predict | 14 |
| abstract_inverted_index.present | 68 |
| abstract_inverted_index.problem | 25 |
| abstract_inverted_index.provide | 42 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.“heat | 109 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.cyclists | 83 |
| abstract_inverted_index.enabling | 54 |
| abstract_inverted_index.mapping, | 126 |
| abstract_inverted_index.mapping. | 80 |
| abstract_inverted_index.obtained | 85, 127 |
| abstract_inverted_index.outcomes | 139 |
| abstract_inverted_index.possible | 112 |
| abstract_inverted_index.problems | 7 |
| abstract_inverted_index.sequence | 88 |
| abstract_inverted_index.approach, | 118 |
| abstract_inverted_index.campaigns | 131 |
| abstract_inverted_index.cyclists. | 20 |
| abstract_inverted_index.different | 138 |
| abstract_inverted_index.generated | 120 |
| abstract_inverted_index.hazardous | 15, 113 |
| abstract_inverted_index.involving | 17 |
| abstract_inverted_index.locations | 97 |
| abstract_inverted_index.technical | 36 |
| abstract_inverted_index.typically | 26 |
| abstract_inverted_index.(Germany). | 134 |
| abstract_inverted_index.equivalent | 37 |
| abstract_inverted_index.junctions. | 150 |
| abstract_inverted_index.processing | 61 |
| abstract_inverted_index.situations | 16 |
| abstract_inverted_index.Pedestrians | 81 |
| abstract_inverted_index.accumulated | 100 |
| abstract_inverted_index.demonstrate | 116 |
| abstract_inverted_index.measurement | 130 |
| abstract_inverted_index.pedestrians | 18 |
| abstract_inverted_index.residential | 144 |
| abstract_inverted_index.situations. | 114 |
| abstract_inverted_index.thresholds. | 62 |
| abstract_inverted_index.segmentation | 93 |
| abstract_inverted_index.self-driving | 10, 52 |
| abstract_inverted_index.understanding | 31 |
| abstract_inverted_index.classification. | 95 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.62302446 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |