Generating Adversarial Examples with Graph Neural Networks Article Swipe
Recent years have witnessed the deployment of adversarial attacks to evaluate the robustness of Neural Networks. Past work in this field has relied on traditional optimization algorithms that ignore the inherent structure of the problem and data, or generative methods that rely purely on learning and often fail to generate adversarial examples where they are hard to find. To alleviate these deficiencies, we propose a novel attack based on a graph neural network (GNN) that takes advantage of the strengths of both approaches; we call it AdvGNN. Our GNN architecture closely resembles the network we wish to attack. During inference, we perform forward-backward passes through the GNN layers to guide an iterative procedure towards adversarial examples. During training, its parameters are estimated via a loss function that encourages the efficient computation of adversarial examples over a time horizon. We show that our method beats state-of-the-art adversarial attacks, including PGD-attack, MI-FGSM, and Carlini and Wagner attack, reducing the time required to generate adversarial examples with small perturbation norms by over 65%. Moreover, AdvGNN achieves good generalization performance on unseen networks. Finally, we provide a new challenging dataset specifically designed to allow for a more illustrative comparison of adversarial attacks.
Related Topics
- Type
- article
- Language
- en
- OA Status
- green
- Cited By
- 1
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3183386840
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3183386840Canonical identifier for this work in OpenAlex
- Title
-
Generating Adversarial Examples with Graph Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-27Full publication date if available
- Authors
-
Florian Jaeckle, Manish KumarList of authors in order
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/2105.14644Direct OA link when available
- Concepts
-
Adversarial system, Computer science, Artificial intelligence, Robustness (evolution), Generative grammar, Artificial neural network, Inference, Graph, Machine learning, Generalization, Computation, Deep neural networks, Theoretical computer science, Algorithm, Mathematics, Gene, Mathematical analysis, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3183386840 |
|---|---|
| doi | |
| ids.mag | 3183386840 |
| ids.openalex | https://openalex.org/W3183386840 |
| fwci | 0.14110358 |
| type | article |
| title | Generating Adversarial Examples with Graph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.946399986743927 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9435999989509583 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9146599769592285 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7737074494361877 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5653045773506165 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5383445024490356 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C39890363 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5116713047027588 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[4].display_name | Generative grammar |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48560255765914917 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48251697421073914 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47675761580467224 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46825867891311646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C177148314 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46023085713386536 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[9].display_name | Generalization |
| concepts[10].id | https://openalex.org/C45374587 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44090530276298523 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[10].display_name | Computation |
| concepts[11].id | https://openalex.org/C2984842247 |
| concepts[11].level | 3 |
| concepts[11].score | 0.42999354004859924 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep neural networks |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36365947127342224 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2595328688621521 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12848913669586182 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C55493867 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[18].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.9146599769592285 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7737074494361877 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5653045773506165 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.5383445024490356 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/generative-grammar |
| keywords[4].score | 0.5116713047027588 |
| keywords[4].display_name | Generative grammar |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.48560255765914917 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.48251697421073914 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.47675761580467224 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.46825867891311646 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/generalization |
| keywords[9].score | 0.46023085713386536 |
| keywords[9].display_name | Generalization |
| keywords[10].id | https://openalex.org/keywords/computation |
| keywords[10].score | 0.44090530276298523 |
| keywords[10].display_name | Computation |
| keywords[11].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[11].score | 0.42999354004859924 |
| keywords[11].display_name | Deep neural networks |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.36365947127342224 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.2595328688621521 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.12848913669586182 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:ora.ox.ac.uk:uuid:52c7830d-e5be-46c7-b42c-43ee7ab102ff |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306402636 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Oxford University Research Archive (ORA) (University of Oxford) |
| locations[0].source.host_organization | https://openalex.org/I40120149 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/I40120149 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Conference item |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Symplectic Elements |
| locations[0].landing_page_url | |
| locations[1].id | mag:3183386840 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/abs/2105.14644 |
| authorships[0].author.id | https://openalex.org/A5033700527 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-4607-6476 |
| authorships[0].author.display_name | Florian Jaeckle |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Oxford. |
| authorships[0].institutions[0].id | https://openalex.org/I40120149 |
| authorships[0].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Florian Jaeckle |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Oxford. |
| authorships[1].author.id | https://openalex.org/A5018728658 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1311-0976 |
| authorships[1].author.display_name | Manish Kumar |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford. |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | M. Pawan Kumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/2105.14644 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating Adversarial Examples with Graph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W3165990577, https://openalex.org/W3099371075, https://openalex.org/W3021431680, https://openalex.org/W2949384876, https://openalex.org/W3005253356, https://openalex.org/W3164364099, https://openalex.org/W2902437702, https://openalex.org/W3066878117, https://openalex.org/W2962550381, https://openalex.org/W2892128688, https://openalex.org/W3154277855, https://openalex.org/W2894012075, https://openalex.org/W3008002767, https://openalex.org/W3022151098, https://openalex.org/W3022223508, https://openalex.org/W3130129168, https://openalex.org/W2969312451, https://openalex.org/W2516574342, https://openalex.org/W3061797349, https://openalex.org/W3048433359 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | mag:3183386840 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/2105.14644 |
| primary_location.id | pmh:oai:ora.ox.ac.uk:uuid:52c7830d-e5be-46c7-b42c-43ee7ab102ff |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306402636 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Oxford University Research Archive (ORA) (University of Oxford) |
| primary_location.source.host_organization | https://openalex.org/I40120149 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/I40120149 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Conference item |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Symplectic Elements |
| primary_location.landing_page_url | |
| publication_date | 2021-07-27 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 69, 123, 135, 182, 191 |
| abstract_inverted_index.To | 58 |
| abstract_inverted_index.We | 138 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.by | 167 |
| abstract_inverted_index.in | 18 |
| abstract_inverted_index.it | 85 |
| abstract_inverted_index.of | 6, 13, 32, 77, 80, 131, 195 |
| abstract_inverted_index.on | 23, 43, 68, 176 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 9, 48, 56, 96, 108, 159, 188 |
| abstract_inverted_index.we | 62, 83, 94, 100, 180 |
| abstract_inverted_index.GNN | 88, 106 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 35, 45, 150, 152 |
| abstract_inverted_index.are | 54, 120 |
| abstract_inverted_index.for | 190 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.its | 118 |
| abstract_inverted_index.new | 183 |
| abstract_inverted_index.our | 141 |
| abstract_inverted_index.the | 4, 11, 29, 33, 78, 92, 105, 128, 156 |
| abstract_inverted_index.via | 122 |
| abstract_inverted_index.65%. | 169 |
| abstract_inverted_index.Past | 16 |
| abstract_inverted_index.both | 81 |
| abstract_inverted_index.call | 84 |
| abstract_inverted_index.fail | 47 |
| abstract_inverted_index.good | 173 |
| abstract_inverted_index.hard | 55 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.loss | 124 |
| abstract_inverted_index.more | 192 |
| abstract_inverted_index.over | 134, 168 |
| abstract_inverted_index.rely | 41 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.that | 27, 40, 74, 126, 140 |
| abstract_inverted_index.they | 53 |
| abstract_inverted_index.this | 19 |
| abstract_inverted_index.time | 136, 157 |
| abstract_inverted_index.wish | 95 |
| abstract_inverted_index.with | 163 |
| abstract_inverted_index.work | 17 |
| abstract_inverted_index.(GNN) | 73 |
| abstract_inverted_index.allow | 189 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.beats | 143 |
| abstract_inverted_index.data, | 36 |
| abstract_inverted_index.field | 20 |
| abstract_inverted_index.find. | 57 |
| abstract_inverted_index.graph | 70 |
| abstract_inverted_index.guide | 109 |
| abstract_inverted_index.norms | 166 |
| abstract_inverted_index.novel | 65 |
| abstract_inverted_index.often | 46 |
| abstract_inverted_index.small | 164 |
| abstract_inverted_index.takes | 75 |
| abstract_inverted_index.these | 60 |
| abstract_inverted_index.where | 52 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.AdvGNN | 171 |
| abstract_inverted_index.During | 98, 116 |
| abstract_inverted_index.Neural | 14 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.Wagner | 153 |
| abstract_inverted_index.attack | 66 |
| abstract_inverted_index.ignore | 28 |
| abstract_inverted_index.layers | 107 |
| abstract_inverted_index.method | 142 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.passes | 103 |
| abstract_inverted_index.purely | 42 |
| abstract_inverted_index.relied | 22 |
| abstract_inverted_index.unseen | 177 |
| abstract_inverted_index.AdvGNN. | 86 |
| abstract_inverted_index.Carlini | 151 |
| abstract_inverted_index.attack, | 154 |
| abstract_inverted_index.attack. | 97 |
| abstract_inverted_index.attacks | 8 |
| abstract_inverted_index.closely | 90 |
| abstract_inverted_index.dataset | 185 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.network | 72, 93 |
| abstract_inverted_index.perform | 101 |
| abstract_inverted_index.problem | 34 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.provide | 181 |
| abstract_inverted_index.through | 104 |
| abstract_inverted_index.towards | 113 |
| abstract_inverted_index.Finally, | 179 |
| abstract_inverted_index.MI-FGSM, | 149 |
| abstract_inverted_index.achieves | 172 |
| abstract_inverted_index.attacks, | 146 |
| abstract_inverted_index.attacks. | 197 |
| abstract_inverted_index.designed | 187 |
| abstract_inverted_index.evaluate | 10 |
| abstract_inverted_index.examples | 51, 133, 162 |
| abstract_inverted_index.function | 125 |
| abstract_inverted_index.generate | 49, 160 |
| abstract_inverted_index.horizon. | 137 |
| abstract_inverted_index.inherent | 30 |
| abstract_inverted_index.learning | 44 |
| abstract_inverted_index.reducing | 155 |
| abstract_inverted_index.required | 158 |
| abstract_inverted_index.Moreover, | 170 |
| abstract_inverted_index.Networks. | 15 |
| abstract_inverted_index.advantage | 76 |
| abstract_inverted_index.alleviate | 59 |
| abstract_inverted_index.efficient | 129 |
| abstract_inverted_index.estimated | 121 |
| abstract_inverted_index.examples. | 115 |
| abstract_inverted_index.including | 147 |
| abstract_inverted_index.iterative | 111 |
| abstract_inverted_index.networks. | 178 |
| abstract_inverted_index.procedure | 112 |
| abstract_inverted_index.resembles | 91 |
| abstract_inverted_index.strengths | 79 |
| abstract_inverted_index.structure | 31 |
| abstract_inverted_index.training, | 117 |
| abstract_inverted_index.witnessed | 3 |
| abstract_inverted_index.algorithms | 26 |
| abstract_inverted_index.comparison | 194 |
| abstract_inverted_index.deployment | 5 |
| abstract_inverted_index.encourages | 127 |
| abstract_inverted_index.generative | 38 |
| abstract_inverted_index.inference, | 99 |
| abstract_inverted_index.parameters | 119 |
| abstract_inverted_index.robustness | 12 |
| abstract_inverted_index.PGD-attack, | 148 |
| abstract_inverted_index.adversarial | 7, 50, 114, 132, 145, 161, 196 |
| abstract_inverted_index.approaches; | 82 |
| abstract_inverted_index.challenging | 184 |
| abstract_inverted_index.computation | 130 |
| abstract_inverted_index.performance | 175 |
| abstract_inverted_index.traditional | 24 |
| abstract_inverted_index.architecture | 89 |
| abstract_inverted_index.illustrative | 193 |
| abstract_inverted_index.optimization | 25 |
| abstract_inverted_index.perturbation | 165 |
| abstract_inverted_index.specifically | 186 |
| abstract_inverted_index.deficiencies, | 61 |
| abstract_inverted_index.generalization | 174 |
| abstract_inverted_index.forward-backward | 102 |
| abstract_inverted_index.state-of-the-art | 144 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.54291163 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |