Generating Classical Chinese Poems from Vernacular Chinese Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/d19-1637
Classical Chinese poetry is a jewel in the treasure house of Chinese culture. Previous poem generation models only allow users to employ keywords to interfere the meaning of generated poems, leaving the dominion of generation to the model. In this paper, we propose a novel task of generating classical Chinese poems from vernacular, which allows users to have more control over the semantic of generated poems. We adapt the approach of unsupervised machine translation (UMT) to our task. We use segmentation-based padding and reinforcement learning to address under-translation and over-translation respectively. According to experiments, our approach significantly improve the perplexity and BLEU compared with typical UMT models. Furthermore, we explored guidelines on how to write the input vernacular to generate better poems. Human evaluation showed our approach can generate high-quality poems which are comparable to amateur poems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/d19-1637
- https://www.aclweb.org/anthology/D19-1637.pdf
- OA Status
- gold
- Cited By
- 21
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2986550325
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2986550325Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/d19-1637Digital Object Identifier
- Title
-
Generating Classical Chinese Poems from Vernacular ChineseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Zhichao Yang, Pengshan Cai, Yansong Feng, Fei Li, Weijiang Feng, Elena Suet-Ying Chiu, Hong Qing YuList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/d19-1637Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/D19-1637.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/D19-1637.pdfDirect OA link when available
- Concepts
-
Vernacular, Computer science, Linguistics, Natural language processing, Poetry, Classical Chinese, Chinese language, Artificial intelligence, Literature, History, Art, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 5, 2022: 6, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2986550325 |
|---|---|
| doi | https://doi.org/10.18653/v1/d19-1637 |
| ids.doi | https://doi.org/10.18653/v1/d19-1637 |
| ids.mag | 2986550325 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32467928 |
| ids.openalex | https://openalex.org/W2986550325 |
| fwci | 1.53617746 |
| type | article |
| title | Generating Classical Chinese Poems from Vernacular Chinese |
| biblio.issue | |
| biblio.volume | 2019 |
| biblio.last_page | 6164 |
| biblio.first_page | 6155 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780386941 |
| concepts[0].level | 2 |
| concepts[0].score | 0.782099723815918 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1036511 |
| concepts[0].display_name | Vernacular |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5654888153076172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C41895202 |
| concepts[2].level | 1 |
| concepts[2].score | 0.516035795211792 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[2].display_name | Linguistics |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5095698833465576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C164913051 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47061946988105774 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q482 |
| concepts[4].display_name | Poetry |
| concepts[5].id | https://openalex.org/C2777828232 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4690435528755188 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q37041 |
| concepts[5].display_name | Classical Chinese |
| concepts[6].id | https://openalex.org/C3018428822 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41239818930625916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7850 |
| concepts[6].display_name | Chinese language |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38398775458335876 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C124952713 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3506174385547638 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[8].display_name | Literature |
| concepts[9].id | https://openalex.org/C95457728 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32553690671920776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[9].display_name | History |
| concepts[10].id | https://openalex.org/C142362112 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3009096384048462 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[10].display_name | Art |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.21609312295913696 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/vernacular |
| keywords[0].score | 0.782099723815918 |
| keywords[0].display_name | Vernacular |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5654888153076172 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/linguistics |
| keywords[2].score | 0.516035795211792 |
| keywords[2].display_name | Linguistics |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.5095698833465576 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/poetry |
| keywords[4].score | 0.47061946988105774 |
| keywords[4].display_name | Poetry |
| keywords[5].id | https://openalex.org/keywords/classical-chinese |
| keywords[5].score | 0.4690435528755188 |
| keywords[5].display_name | Classical Chinese |
| keywords[6].id | https://openalex.org/keywords/chinese-language |
| keywords[6].score | 0.41239818930625916 |
| keywords[6].display_name | Chinese language |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38398775458335876 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/literature |
| keywords[8].score | 0.3506174385547638 |
| keywords[8].display_name | Literature |
| keywords[9].id | https://openalex.org/keywords/history |
| keywords[9].score | 0.32553690671920776 |
| keywords[9].display_name | History |
| keywords[10].id | https://openalex.org/keywords/art |
| keywords[10].score | 0.3009096384048462 |
| keywords[10].display_name | Art |
| keywords[11].id | https://openalex.org/keywords/philosophy |
| keywords[11].score | 0.21609312295913696 |
| keywords[11].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.18653/v1/d19-1637 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/D19-1637.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/d19-1637 |
| locations[1].id | pmid:32467928 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32467928 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:7255431 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc Conf Empir Methods Nat Lang Process |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7255431 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5002476927 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2797-4257 |
| authorships[0].author.display_name | Zhichao Yang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33434090 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Massachusetts, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I33434090 |
| authorships[0].institutions[0].ror | https://ror.org/04ydmy275 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33434090 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Massachusetts Boston |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhichao Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Massachusetts, MA, USA |
| authorships[1].author.id | https://openalex.org/A5018005817 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1022-4721 |
| authorships[1].author.display_name | Pengshan Cai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33434090 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Massachusetts, MA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I33434090 |
| authorships[1].institutions[0].ror | https://ror.org/04ydmy275 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33434090 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Massachusetts Boston |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pengshan Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Massachusetts, MA, USA |
| authorships[2].author.id | https://openalex.org/A5102220317 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yansong Feng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Computer Science and Technology, Peking University, China |
| authorships[2].institutions[0].id | https://openalex.org/I20231570 |
| authorships[2].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yansong Feng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Computer Science and Technology, Peking University, China |
| authorships[3].author.id | https://openalex.org/A5100325881 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1816-1761 |
| authorships[3].author.display_name | Fei Li |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33434090 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Massachusetts, MA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I33434090 |
| authorships[3].institutions[0].ror | https://ror.org/04ydmy275 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33434090 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Massachusetts Boston |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fei Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Massachusetts, MA, USA |
| authorships[4].author.id | https://openalex.org/A5048113338 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5564-8977 |
| authorships[4].author.display_name | Weijiang Feng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer, National University of Defense Technology, China |
| authorships[4].institutions[0].id | https://openalex.org/I170215575 |
| authorships[4].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National University of Defense Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Weijiang Feng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer, National University of Defense Technology, China |
| authorships[5].author.id | https://openalex.org/A5006079197 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Elena Suet-Ying Chiu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I33434090 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Massachusetts, MA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I33434090 |
| authorships[5].institutions[0].ror | https://ror.org/04ydmy275 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I33434090 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Massachusetts Boston |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Elena Suet-Ying Chiu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Massachusetts, MA, USA |
| authorships[6].author.id | https://openalex.org/A5087955962 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6330-2725 |
| authorships[6].author.display_name | Hong Qing Yu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I33434090 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Massachusetts, MA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I33434090 |
| authorships[6].institutions[0].ror | https://ror.org/04ydmy275 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I33434090 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Massachusetts Boston |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hong Yu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Massachusetts, MA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/D19-1637.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating Classical Chinese Poems from Vernacular Chinese |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2370644930, https://openalex.org/W2365319872, https://openalex.org/W2389634548, https://openalex.org/W2393520828, https://openalex.org/W2374013491, https://openalex.org/W2387408108, https://openalex.org/W2377140213, https://openalex.org/W3149492442, https://openalex.org/W2347973393, https://openalex.org/W2363812757 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.18653/v1/d19-1637 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/D19-1637.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/d19-1637 |
| primary_location.id | doi:10.18653/v1/d19-1637 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/D19-1637.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/d19-1637 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2131988669, https://openalex.org/W2888173624, https://openalex.org/W2950909321, https://openalex.org/W4298393544, https://openalex.org/W2593011301, https://openalex.org/W2509593407, https://openalex.org/W2963768805, https://openalex.org/W2101105183, https://openalex.org/W2963602293, https://openalex.org/W2962836461, https://openalex.org/W2963403868, https://openalex.org/W4385245566, https://openalex.org/W2963084599, https://openalex.org/W2963743213, https://openalex.org/W2949785757, https://openalex.org/W2963260202, https://openalex.org/W2807738734, https://openalex.org/W2963699608, https://openalex.org/W2963119518, https://openalex.org/W2525778437, https://openalex.org/W2964308564, https://openalex.org/W2889933256, https://openalex.org/W2133564696, https://openalex.org/W2548441712, https://openalex.org/W2788148803, https://openalex.org/W2157331557, https://openalex.org/W2612675303, https://openalex.org/W12732426, https://openalex.org/W2115221470, https://openalex.org/W2064675550, https://openalex.org/W2798931235, https://openalex.org/W2572589325 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 4, 43 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.We | 66, 78 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 10, 27, 33, 46, 63, 70 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.to | 20, 23, 35, 56, 75, 85, 92, 113, 118, 134 |
| abstract_inverted_index.we | 41, 108 |
| abstract_inverted_index.UMT | 105 |
| abstract_inverted_index.and | 82, 88, 100 |
| abstract_inverted_index.are | 132 |
| abstract_inverted_index.can | 127 |
| abstract_inverted_index.how | 112 |
| abstract_inverted_index.our | 76, 94, 125 |
| abstract_inverted_index.the | 7, 25, 31, 36, 61, 68, 98, 115 |
| abstract_inverted_index.use | 79 |
| abstract_inverted_index.BLEU | 101 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.have | 57 |
| abstract_inverted_index.more | 58 |
| abstract_inverted_index.only | 17 |
| abstract_inverted_index.over | 60 |
| abstract_inverted_index.poem | 14 |
| abstract_inverted_index.task | 45 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.with | 103 |
| abstract_inverted_index.(UMT) | 74 |
| abstract_inverted_index.Human | 122 |
| abstract_inverted_index.adapt | 67 |
| abstract_inverted_index.allow | 18 |
| abstract_inverted_index.house | 9 |
| abstract_inverted_index.input | 116 |
| abstract_inverted_index.jewel | 5 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.poems | 50, 130 |
| abstract_inverted_index.task. | 77 |
| abstract_inverted_index.users | 19, 55 |
| abstract_inverted_index.which | 53, 131 |
| abstract_inverted_index.write | 114 |
| abstract_inverted_index.allows | 54 |
| abstract_inverted_index.better | 120 |
| abstract_inverted_index.employ | 21 |
| abstract_inverted_index.model. | 37 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.paper, | 40 |
| abstract_inverted_index.poems, | 29 |
| abstract_inverted_index.poems. | 65, 121, 136 |
| abstract_inverted_index.poetry | 2 |
| abstract_inverted_index.showed | 124 |
| abstract_inverted_index.Chinese | 1, 11, 49 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.amateur | 135 |
| abstract_inverted_index.control | 59 |
| abstract_inverted_index.improve | 97 |
| abstract_inverted_index.leaving | 30 |
| abstract_inverted_index.machine | 72 |
| abstract_inverted_index.meaning | 26 |
| abstract_inverted_index.models. | 106 |
| abstract_inverted_index.padding | 81 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.typical | 104 |
| abstract_inverted_index.Previous | 13 |
| abstract_inverted_index.approach | 69, 95, 126 |
| abstract_inverted_index.compared | 102 |
| abstract_inverted_index.culture. | 12 |
| abstract_inverted_index.dominion | 32 |
| abstract_inverted_index.explored | 109 |
| abstract_inverted_index.generate | 119, 128 |
| abstract_inverted_index.keywords | 22 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.semantic | 62 |
| abstract_inverted_index.treasure | 8 |
| abstract_inverted_index.According | 91 |
| abstract_inverted_index.Classical | 0 |
| abstract_inverted_index.classical | 48 |
| abstract_inverted_index.generated | 28, 64 |
| abstract_inverted_index.interfere | 24 |
| abstract_inverted_index.comparable | 133 |
| abstract_inverted_index.evaluation | 123 |
| abstract_inverted_index.generating | 47 |
| abstract_inverted_index.generation | 15, 34 |
| abstract_inverted_index.guidelines | 110 |
| abstract_inverted_index.perplexity | 99 |
| abstract_inverted_index.vernacular | 117 |
| abstract_inverted_index.translation | 73 |
| abstract_inverted_index.vernacular, | 52 |
| abstract_inverted_index.Furthermore, | 107 |
| abstract_inverted_index.experiments, | 93 |
| abstract_inverted_index.high-quality | 129 |
| abstract_inverted_index.unsupervised | 71 |
| abstract_inverted_index.reinforcement | 83 |
| abstract_inverted_index.respectively. | 90 |
| abstract_inverted_index.significantly | 96 |
| abstract_inverted_index.over-translation | 89 |
| abstract_inverted_index.under-translation | 87 |
| abstract_inverted_index.segmentation-based | 80 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.86896034 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |