Generating LOD3 building models from structure-from-motion and semantic segmentation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.autcon.2022.104430
This paper describes a pipeline for automatically generating level of detail (LOD) models (digital twins), specifically LOD2 and LOD3, from free-standing buildings. Our approach combines structure from motion (SfM) with deep-learning-based segmentation techniques. Given multiple-view images of a building, we compute a three-dimensional (3D) planar abstraction (LOD2 model) of its point cloud using SfM techniques. To obtain LOD3 models, we use deep learning to perform semantic segmentation of the openings in the two-dimensional (2D) images. Unlike existing approaches, we do not rely on complex input, pre-defined 3D shapes or manual intervention. To demonstrate the robustness of our method, we show that it can generate 3D building shapes from a collection of building images with no further input. For evaluating reconstructions, we also propose two novel metrics. The first is a Euclidean-distance-based correlation of the 3D building model with the point cloud. The second involves re-projecting 3D model facades onto source photos to determine dice scores with respect to the ground-truth masks. Finally, we make the code, the image datasets, SfM outputs, and digital twins reported in this work publicly available in github.com/eesd-epfl/LOD3_buildings and doi.org/10.5281/zenodo.6651663. With this work we aim to contribute research in applications such as construction management, city planning, and mechanical analysis, among others.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.autcon.2022.104430
- OA Status
- hybrid
- Cited By
- 64
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283169615
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283169615Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.autcon.2022.104430Digital Object Identifier
- Title
-
Generating LOD3 building models from structure-from-motion and semantic segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-20Full publication date if available
- Authors
-
Bryan German Pantoja-Rosero, Radhakrishna Achanta, Mateusz Koziński, Pascal Fua, Fernando Pérez‐Cruz, Katrin BeyerList of authors in order
- Landing page
-
https://doi.org/10.1016/j.autcon.2022.104430Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.autcon.2022.104430Direct OA link when available
- Concepts
-
Point cloud, Computer science, Segmentation, Ground truth, Artificial intelligence, Robustness (evolution), Structure from motion, Computer vision, Deep learning, Pipeline (software), Abstraction, Dice, Motion (physics), Mathematics, Geometry, Chemistry, Biochemistry, Programming language, Epistemology, Philosophy, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
64Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 21, 2024: 30, 2023: 10, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283169615 |
|---|---|
| doi | https://doi.org/10.1016/j.autcon.2022.104430 |
| ids.doi | https://doi.org/10.3929/ethz-b-000555933 |
| ids.openalex | https://openalex.org/W4283169615 |
| fwci | 21.11083763 |
| type | article |
| title | Generating LOD3 building models from structure-from-motion and semantic segmentation |
| biblio.issue | |
| biblio.volume | 141 |
| biblio.last_page | 104430 |
| biblio.first_page | 104430 |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| is_xpac | False |
| apc_list.value | 4450 |
| apc_list.currency | USD |
| apc_list.value_usd | 4450 |
| apc_paid.value | 4450 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4450 |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.790805459022522 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7476171851158142 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7073783874511719 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C146849305 |
| concepts[3].level | 2 |
| concepts[3].score | 0.598520040512085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[3].display_name | Ground truth |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5915935039520264 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5742464661598206 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C146159030 |
| concepts[6].level | 3 |
| concepts[6].score | 0.526310920715332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7625099 |
| concepts[6].display_name | Structure from motion |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5032500624656677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45055440068244934 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C43521106 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4223720133304596 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[9].display_name | Pipeline (software) |
| concepts[10].id | https://openalex.org/C124304363 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4177877902984619 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q673661 |
| concepts[10].display_name | Abstraction |
| concepts[11].id | https://openalex.org/C22029948 |
| concepts[11].level | 2 |
| concepts[11].score | 0.415147066116333 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[11].display_name | Dice |
| concepts[12].id | https://openalex.org/C104114177 |
| concepts[12].level | 2 |
| concepts[12].score | 0.27328944206237793 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[12].display_name | Motion (physics) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09170788526535034 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09065565466880798 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C111472728 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[18].display_name | Epistemology |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C104317684 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[20].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.790805459022522 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7476171851158142 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.7073783874511719 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/ground-truth |
| keywords[3].score | 0.598520040512085 |
| keywords[3].display_name | Ground truth |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5915935039520264 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.5742464661598206 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/structure-from-motion |
| keywords[6].score | 0.526310920715332 |
| keywords[6].display_name | Structure from motion |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.5032500624656677 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.45055440068244934 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/pipeline |
| keywords[9].score | 0.4223720133304596 |
| keywords[9].display_name | Pipeline (software) |
| keywords[10].id | https://openalex.org/keywords/abstraction |
| keywords[10].score | 0.4177877902984619 |
| keywords[10].display_name | Abstraction |
| keywords[11].id | https://openalex.org/keywords/dice |
| keywords[11].score | 0.415147066116333 |
| keywords[11].display_name | Dice |
| keywords[12].id | https://openalex.org/keywords/motion |
| keywords[12].score | 0.27328944206237793 |
| keywords[12].display_name | Motion (physics) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09170788526535034 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.09065565466880798 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1016/j.autcon.2022.104430 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S172073041 |
| locations[0].source.issn | 0926-5805, 1872-7891 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0926-5805 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Automation in Construction |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Automation in Construction |
| locations[0].landing_page_url | https://doi.org/10.1016/j.autcon.2022.104430 |
| locations[1].id | pmh:oai:infoscience.epfl.ch:295860 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Infoscience (Ecole Polytechnique Fédérale de Lausanne) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | research article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://infoscience.epfl.ch/record/295860 |
| locations[2].id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/555933 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402302 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| locations[2].source.host_organization | https://openalex.org/I35440088 |
| locations[2].source.host_organization_name | ETH Zurich |
| locations[2].source.host_organization_lineage | https://openalex.org/I35440088 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Automation in Construction, 141 |
| locations[2].landing_page_url | http://hdl.handle.net/20.500.11850/555933 |
| locations[3].id | doi:10.3929/ethz-b-000555933 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051236 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | ETH Zürich Research Collection |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.3929/ethz-b-000555933 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5065165165 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3723-3882 |
| authorships[0].author.display_name | Bryan German Pantoja-Rosero |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[0].affiliations[0].raw_affiliation_string | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[0].institutions[0].id | https://openalex.org/I5124864 |
| authorships[0].institutions[0].ror | https://ror.org/02s376052 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | B.G. Pantoja-Rosero |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[1].author.id | https://openalex.org/A5083791711 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7894-275X |
| authorships[1].author.display_name | Radhakrishna Achanta |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[1].affiliations[0].raw_affiliation_string | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I35440088 |
| authorships[1].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | ETH Zurich |
| authorships[1].institutions[1].id | https://openalex.org/I4210122261 |
| authorships[1].institutions[1].ror | https://ror.org/02hdt9m26 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[1].institutions[1].country_code | CH |
| authorships[1].institutions[1].display_name | Swiss Data Science Center |
| authorships[1].institutions[2].id | https://openalex.org/I5124864 |
| authorships[1].institutions[2].ror | https://ror.org/02s376052 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[1].institutions[2].country_code | CH |
| authorships[1].institutions[2].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | R. Achanta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[2].author.id | https://openalex.org/A5044530513 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3187-518X |
| authorships[2].author.display_name | Mateusz Koziński |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I5124864 |
| authorships[2].institutions[0].ror | https://ror.org/02s376052 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M. Kozinski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[3].author.id | https://openalex.org/A5038674741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6702-9970 |
| authorships[3].author.display_name | Pascal Fua |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I5124864 |
| authorships[3].institutions[0].ror | https://ror.org/02s376052 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | P. Fua |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[4].author.id | https://openalex.org/A5088555568 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8996-5076 |
| authorships[4].author.display_name | Fernando Pérez‐Cruz |
| authorships[4].countries | CH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[4].affiliations[0].raw_affiliation_string | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[4].institutions[0].id | https://openalex.org/I35440088 |
| authorships[4].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | ETH Zurich |
| authorships[4].institutions[1].id | https://openalex.org/I4210122261 |
| authorships[4].institutions[1].ror | https://ror.org/02hdt9m26 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[4].institutions[1].country_code | CH |
| authorships[4].institutions[1].display_name | Swiss Data Science Center |
| authorships[4].institutions[2].id | https://openalex.org/I5124864 |
| authorships[4].institutions[2].ror | https://ror.org/02s376052 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[4].institutions[2].country_code | CH |
| authorships[4].institutions[2].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | F. Perez-Cruz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[5].author.id | https://openalex.org/A5069185743 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6883-5157 |
| authorships[5].author.display_name | Katrin Beyer |
| authorships[5].countries | CH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[5].affiliations[0].raw_affiliation_string | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[5].institutions[0].id | https://openalex.org/I5124864 |
| authorships[5].institutions[0].ror | https://ror.org/02s376052 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[5].institutions[0].country_code | CH |
| authorships[5].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | K. Beyer |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.autcon.2022.104430 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating LOD3 building models from structure-from-motion and semantic segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W2562256921, https://openalex.org/W2973136608, https://openalex.org/W2517104666, https://openalex.org/W2541791370, https://openalex.org/W3158534694, https://openalex.org/W2920794225, https://openalex.org/W2914179169, https://openalex.org/W4287373878, https://openalex.org/W3122598341, https://openalex.org/W2950629728 |
| cited_by_count | 64 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 21 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 30 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.autcon.2022.104430 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S172073041 |
| best_oa_location.source.issn | 0926-5805, 1872-7891 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0926-5805 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Automation in Construction |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Automation in Construction |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.autcon.2022.104430 |
| primary_location.id | doi:10.1016/j.autcon.2022.104430 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S172073041 |
| primary_location.source.issn | 0926-5805, 1872-7891 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0926-5805 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Automation in Construction |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Automation in Construction |
| primary_location.landing_page_url | https://doi.org/10.1016/j.autcon.2022.104430 |
| publication_date | 2022-06-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3154861376, https://openalex.org/W6634826976, https://openalex.org/W1611818215, https://openalex.org/W2348385415, https://openalex.org/W2803600673, https://openalex.org/W2027285680, https://openalex.org/W6726306736, https://openalex.org/W6746717619, https://openalex.org/W6750431968, https://openalex.org/W1132527629, https://openalex.org/W2571712648, https://openalex.org/W2950316879, https://openalex.org/W6680798557, https://openalex.org/W2540558328, https://openalex.org/W2606924974, https://openalex.org/W2587303518, https://openalex.org/W6785819141, https://openalex.org/W6758855860, https://openalex.org/W2983232213, https://openalex.org/W2033552406, https://openalex.org/W2148953571, https://openalex.org/W6742086100, https://openalex.org/W3027028760, https://openalex.org/W6628124331, https://openalex.org/W4231582187, https://openalex.org/W6769023865, https://openalex.org/W3083292218, https://openalex.org/W6718240422, https://openalex.org/W2138835141, https://openalex.org/W6677548441, https://openalex.org/W2151103935, https://openalex.org/W2591119809, https://openalex.org/W4256361765, https://openalex.org/W2914895973, https://openalex.org/W2186222003, https://openalex.org/W1992989752, https://openalex.org/W2125186487, https://openalex.org/W4241307704, https://openalex.org/W1583953270, https://openalex.org/W2942992487, https://openalex.org/W4248855309, https://openalex.org/W2244833639, https://openalex.org/W2962914239 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 3, 37, 41, 108, 129 |
| abstract_inverted_index.3D | 86, 104, 134, 145 |
| abstract_inverted_index.To | 55, 91 |
| abstract_inverted_index.as | 195 |
| abstract_inverted_index.do | 79 |
| abstract_inverted_index.in | 70, 175, 180, 192 |
| abstract_inverted_index.is | 128 |
| abstract_inverted_index.it | 101 |
| abstract_inverted_index.no | 114 |
| abstract_inverted_index.of | 9, 36, 48, 67, 95, 110, 132 |
| abstract_inverted_index.on | 82 |
| abstract_inverted_index.or | 88 |
| abstract_inverted_index.to | 63, 151, 157, 189 |
| abstract_inverted_index.we | 39, 59, 78, 98, 120, 162, 187 |
| abstract_inverted_index.For | 117 |
| abstract_inverted_index.Our | 22 |
| abstract_inverted_index.SfM | 53, 169 |
| abstract_inverted_index.The | 126, 141 |
| abstract_inverted_index.aim | 188 |
| abstract_inverted_index.and | 17, 171, 182, 200 |
| abstract_inverted_index.can | 102 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.not | 80 |
| abstract_inverted_index.our | 96 |
| abstract_inverted_index.the | 68, 71, 93, 133, 138, 158, 164, 166 |
| abstract_inverted_index.two | 123 |
| abstract_inverted_index.use | 60 |
| abstract_inverted_index.(2D) | 73 |
| abstract_inverted_index.(3D) | 43 |
| abstract_inverted_index.LOD2 | 16 |
| abstract_inverted_index.LOD3 | 57 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.With | 184 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.city | 198 |
| abstract_inverted_index.deep | 61 |
| abstract_inverted_index.dice | 153 |
| abstract_inverted_index.from | 19, 26, 107 |
| abstract_inverted_index.make | 163 |
| abstract_inverted_index.onto | 148 |
| abstract_inverted_index.rely | 81 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.such | 194 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.this | 176, 185 |
| abstract_inverted_index.with | 29, 113, 137, 155 |
| abstract_inverted_index.work | 177, 186 |
| abstract_inverted_index.(LOD) | 11 |
| abstract_inverted_index.(LOD2 | 46 |
| abstract_inverted_index.(SfM) | 28 |
| abstract_inverted_index.Given | 33 |
| abstract_inverted_index.LOD3, | 18 |
| abstract_inverted_index.among | 203 |
| abstract_inverted_index.cloud | 51 |
| abstract_inverted_index.code, | 165 |
| abstract_inverted_index.first | 127 |
| abstract_inverted_index.image | 167 |
| abstract_inverted_index.level | 8 |
| abstract_inverted_index.model | 136, 146 |
| abstract_inverted_index.novel | 124 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.point | 50, 139 |
| abstract_inverted_index.twins | 173 |
| abstract_inverted_index.using | 52 |
| abstract_inverted_index.Unlike | 75 |
| abstract_inverted_index.cloud. | 140 |
| abstract_inverted_index.detail | 10 |
| abstract_inverted_index.images | 35, 112 |
| abstract_inverted_index.input, | 84 |
| abstract_inverted_index.input. | 116 |
| abstract_inverted_index.manual | 89 |
| abstract_inverted_index.masks. | 160 |
| abstract_inverted_index.model) | 47 |
| abstract_inverted_index.models | 12 |
| abstract_inverted_index.motion | 27 |
| abstract_inverted_index.obtain | 56 |
| abstract_inverted_index.photos | 150 |
| abstract_inverted_index.planar | 44 |
| abstract_inverted_index.scores | 154 |
| abstract_inverted_index.second | 142 |
| abstract_inverted_index.shapes | 87, 106 |
| abstract_inverted_index.source | 149 |
| abstract_inverted_index.complex | 83 |
| abstract_inverted_index.compute | 40 |
| abstract_inverted_index.digital | 172 |
| abstract_inverted_index.facades | 147 |
| abstract_inverted_index.further | 115 |
| abstract_inverted_index.images. | 74 |
| abstract_inverted_index.method, | 97 |
| abstract_inverted_index.models, | 58 |
| abstract_inverted_index.others. | 204 |
| abstract_inverted_index.perform | 64 |
| abstract_inverted_index.propose | 122 |
| abstract_inverted_index.respect | 156 |
| abstract_inverted_index.twins), | 14 |
| abstract_inverted_index.(digital | 13 |
| abstract_inverted_index.Finally, | 161 |
| abstract_inverted_index.approach | 23 |
| abstract_inverted_index.building | 105, 111, 135 |
| abstract_inverted_index.combines | 24 |
| abstract_inverted_index.existing | 76 |
| abstract_inverted_index.generate | 103 |
| abstract_inverted_index.involves | 143 |
| abstract_inverted_index.learning | 62 |
| abstract_inverted_index.metrics. | 125 |
| abstract_inverted_index.openings | 69 |
| abstract_inverted_index.outputs, | 170 |
| abstract_inverted_index.pipeline | 4 |
| abstract_inverted_index.publicly | 178 |
| abstract_inverted_index.reported | 174 |
| abstract_inverted_index.research | 191 |
| abstract_inverted_index.semantic | 65 |
| abstract_inverted_index.analysis, | 202 |
| abstract_inverted_index.available | 179 |
| abstract_inverted_index.building, | 38 |
| abstract_inverted_index.datasets, | 168 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.determine | 152 |
| abstract_inverted_index.planning, | 199 |
| abstract_inverted_index.structure | 25 |
| abstract_inverted_index.buildings. | 21 |
| abstract_inverted_index.collection | 109 |
| abstract_inverted_index.contribute | 190 |
| abstract_inverted_index.evaluating | 118 |
| abstract_inverted_index.generating | 7 |
| abstract_inverted_index.mechanical | 201 |
| abstract_inverted_index.robustness | 94 |
| abstract_inverted_index.abstraction | 45 |
| abstract_inverted_index.approaches, | 77 |
| abstract_inverted_index.correlation | 131 |
| abstract_inverted_index.demonstrate | 92 |
| abstract_inverted_index.management, | 197 |
| abstract_inverted_index.pre-defined | 85 |
| abstract_inverted_index.techniques. | 32, 54 |
| abstract_inverted_index.applications | 193 |
| abstract_inverted_index.construction | 196 |
| abstract_inverted_index.ground-truth | 159 |
| abstract_inverted_index.segmentation | 31, 66 |
| abstract_inverted_index.specifically | 15 |
| abstract_inverted_index.automatically | 6 |
| abstract_inverted_index.free-standing | 20 |
| abstract_inverted_index.intervention. | 90 |
| abstract_inverted_index.multiple-view | 34 |
| abstract_inverted_index.re-projecting | 144 |
| abstract_inverted_index.two-dimensional | 72 |
| abstract_inverted_index.reconstructions, | 119 |
| abstract_inverted_index.three-dimensional | 42 |
| abstract_inverted_index.deep-learning-based | 30 |
| abstract_inverted_index.Euclidean-distance-based | 130 |
| abstract_inverted_index.doi.org/10.5281/zenodo.6651663. | 183 |
| abstract_inverted_index.github.com/eesd-epfl/LOD3_buildings | 181 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5069185743 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I5124864 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.9952455 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |