Generating optimal Gravitational-Wave template banks with metric-preserving autoencoders Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.10466
Matched filtering for signal detection in noisy data requires template banks that capture variation in signal waveforms while minimizing computational cost. Dimensionality reduction of signal waveforms can be important for building efficient template banks. In various domains of physics, dimensionality reduction is very commonly performed using linear methods such as singular value decomposition (SVD). This can, however, introduce redundancies if the signals span curved, nonlinear manifolds in parameter space. Alternatively, autoencoders are a type of neural networks that can be used for non-linear dimensionality reduction. We use a variation of the autoencoder which preserves the metric in its latent space ($g_{ij}^{\text{latent}} \approx g_{ij}^{\text{physical}}$); this enables template banks to be constructed by simply placing a uniform grid in the autoencoder's low-dimensional latent space. We apply our method for creating geometric template banks for gravitational wave searches and show that our banks require fewer dimensions compared to using the SVD basis. Our method can also be useful for other applications requiring dimensionality reduction, such as gravitational waveform modeling, fast parameter estimation and model-independent tests of general relativity. Finally, we discuss extensions to other domains including cosmological parameter estimation, and we show tests of our method in extreme cases of periodic signal manifolds.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.10466
- https://arxiv.org/pdf/2511.10466
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416239880
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416239880Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.10466Digital Object Identifier
- Title
-
Generating optimal Gravitational-Wave template banks with metric-preserving autoencodersWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-13Full publication date if available
- Authors
-
Matías Zaldarriaga, Zheng‐Yi ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.10466Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.10466Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.10466Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416239880 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.10466 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.10466 |
| ids.openalex | https://openalex.org/W4416239880 |
| fwci | |
| type | preprint |
| title | Generating optimal Gravitational-Wave template banks with metric-preserving autoencoders |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.10466 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.10466 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.10466 |
| locations[1].id | doi:10.48550/arxiv.2511.10466 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.10466 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089500886 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Matías Zaldarriaga |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Zaldarriaga, Matias |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101711094 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9014-8479 |
| authorships[1].author.display_name | Zheng‐Yi Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Zihan |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.10466 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-15T00:00:00 |
| display_name | Generating optimal Gravitational-Wave template banks with metric-preserving autoencoders |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:59:17.926181 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.10466 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.10466 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.10466 |
| primary_location.id | pmh:oai:arXiv.org:2511.10466 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.10466 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.10466 |
| publication_date | 2025-11-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 72, 87, 113 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.We | 85, 122 |
| abstract_inverted_index.as | 49, 162 |
| abstract_inverted_index.be | 27, 79, 108, 153 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.if | 59 |
| abstract_inverted_index.in | 5, 14, 66, 96, 116, 193 |
| abstract_inverted_index.is | 41 |
| abstract_inverted_index.of | 23, 37, 74, 89, 172, 190, 196 |
| abstract_inverted_index.to | 107, 144, 179 |
| abstract_inverted_index.we | 176, 187 |
| abstract_inverted_index.Our | 149 |
| abstract_inverted_index.SVD | 147 |
| abstract_inverted_index.and | 135, 169, 186 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.can | 26, 78, 151 |
| abstract_inverted_index.for | 2, 29, 81, 126, 131, 155 |
| abstract_inverted_index.its | 97 |
| abstract_inverted_index.our | 124, 138, 191 |
| abstract_inverted_index.the | 60, 90, 94, 117, 146 |
| abstract_inverted_index.use | 86 |
| abstract_inverted_index.This | 54 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.can, | 55 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.fast | 166 |
| abstract_inverted_index.grid | 115 |
| abstract_inverted_index.show | 136, 188 |
| abstract_inverted_index.span | 62 |
| abstract_inverted_index.such | 48, 161 |
| abstract_inverted_index.that | 11, 77, 137 |
| abstract_inverted_index.this | 103 |
| abstract_inverted_index.type | 73 |
| abstract_inverted_index.used | 80 |
| abstract_inverted_index.very | 42 |
| abstract_inverted_index.wave | 133 |
| abstract_inverted_index.apply | 123 |
| abstract_inverted_index.banks | 10, 106, 130, 139 |
| abstract_inverted_index.cases | 195 |
| abstract_inverted_index.cost. | 20 |
| abstract_inverted_index.fewer | 141 |
| abstract_inverted_index.noisy | 6 |
| abstract_inverted_index.other | 156, 180 |
| abstract_inverted_index.space | 99 |
| abstract_inverted_index.tests | 171, 189 |
| abstract_inverted_index.using | 45, 145 |
| abstract_inverted_index.value | 51 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.while | 17 |
| abstract_inverted_index.(SVD). | 53 |
| abstract_inverted_index.banks. | 33 |
| abstract_inverted_index.basis. | 148 |
| abstract_inverted_index.latent | 98, 120 |
| abstract_inverted_index.linear | 46 |
| abstract_inverted_index.method | 125, 150, 192 |
| abstract_inverted_index.metric | 95 |
| abstract_inverted_index.neural | 75 |
| abstract_inverted_index.signal | 3, 15, 24, 198 |
| abstract_inverted_index.simply | 111 |
| abstract_inverted_index.space. | 68, 121 |
| abstract_inverted_index.useful | 154 |
| abstract_inverted_index.Matched | 0 |
| abstract_inverted_index.\approx | 101 |
| abstract_inverted_index.capture | 12 |
| abstract_inverted_index.curved, | 63 |
| abstract_inverted_index.discuss | 177 |
| abstract_inverted_index.domains | 36, 181 |
| abstract_inverted_index.enables | 104 |
| abstract_inverted_index.extreme | 194 |
| abstract_inverted_index.general | 173 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.placing | 112 |
| abstract_inverted_index.require | 140 |
| abstract_inverted_index.signals | 61 |
| abstract_inverted_index.uniform | 114 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.building | 30 |
| abstract_inverted_index.commonly | 43 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.creating | 127 |
| abstract_inverted_index.however, | 56 |
| abstract_inverted_index.networks | 76 |
| abstract_inverted_index.periodic | 197 |
| abstract_inverted_index.physics, | 38 |
| abstract_inverted_index.requires | 8 |
| abstract_inverted_index.searches | 134 |
| abstract_inverted_index.singular | 50 |
| abstract_inverted_index.template | 9, 32, 105, 129 |
| abstract_inverted_index.waveform | 164 |
| abstract_inverted_index.detection | 4 |
| abstract_inverted_index.efficient | 31 |
| abstract_inverted_index.filtering | 1 |
| abstract_inverted_index.geometric | 128 |
| abstract_inverted_index.important | 28 |
| abstract_inverted_index.including | 182 |
| abstract_inverted_index.introduce | 57 |
| abstract_inverted_index.manifolds | 65 |
| abstract_inverted_index.modeling, | 165 |
| abstract_inverted_index.nonlinear | 64 |
| abstract_inverted_index.parameter | 67, 167, 184 |
| abstract_inverted_index.performed | 44 |
| abstract_inverted_index.preserves | 93 |
| abstract_inverted_index.reduction | 22, 40 |
| abstract_inverted_index.requiring | 158 |
| abstract_inverted_index.variation | 13, 88 |
| abstract_inverted_index.waveforms | 16, 25 |
| abstract_inverted_index.dimensions | 142 |
| abstract_inverted_index.estimation | 168 |
| abstract_inverted_index.extensions | 178 |
| abstract_inverted_index.manifolds. | 199 |
| abstract_inverted_index.minimizing | 18 |
| abstract_inverted_index.non-linear | 82 |
| abstract_inverted_index.reduction, | 160 |
| abstract_inverted_index.reduction. | 84 |
| abstract_inverted_index.autoencoder | 91 |
| abstract_inverted_index.constructed | 109 |
| abstract_inverted_index.estimation, | 185 |
| abstract_inverted_index.relativity. | 174 |
| abstract_inverted_index.applications | 157 |
| abstract_inverted_index.autoencoders | 70 |
| abstract_inverted_index.cosmological | 183 |
| abstract_inverted_index.redundancies | 58 |
| abstract_inverted_index.autoencoder's | 118 |
| abstract_inverted_index.computational | 19 |
| abstract_inverted_index.decomposition | 52 |
| abstract_inverted_index.gravitational | 132, 163 |
| abstract_inverted_index.Alternatively, | 69 |
| abstract_inverted_index.Dimensionality | 21 |
| abstract_inverted_index.dimensionality | 39, 83, 159 |
| abstract_inverted_index.low-dimensional | 119 |
| abstract_inverted_index.model-independent | 170 |
| abstract_inverted_index.($g_{ij}^{\text{latent}} | 100 |
| abstract_inverted_index.g_{ij}^{\text{physical}}$); | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |