Generating particle physics Lagrangians with transformers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.09729
In physics, Lagrangians provide a systematic way to describe laws governing physical systems. In the context of particle physics, they encode the interactions and behavior of the fundamental building blocks of our universe. By treating Lagrangians as complex, rule-based constructs similar to linguistic expressions, we trained a transformer model -- proven to be effective in natural language tasks -- to predict the Lagrangian corresponding to a given list of particles. We report on the transformer's performance in constructing Lagrangians respecting the Standard Model $\mathrm{SU}(3)\times \mathrm{SU}(2)\times \mathrm{U}(1)$ gauge symmetries. The resulting model is shown to achieve high accuracies (over 90\%) with Lagrangians up to six matter fields, with the capacity to generalize beyond the training distribution, albeit within architectural constraints. We show through an analysis of input embeddings that the model has internalized concepts such as group representations and conjugation operations as it learned to generate Lagrangians. We make the model and training datasets available to the community. An interactive demonstration can be found at: \url{https://huggingface.co/spaces/JoseEliel/generate-lagrangians}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.09729
- https://arxiv.org/pdf/2501.09729
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406549437
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406549437Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.09729Digital Object Identifier
- Title
-
Generating particle physics Lagrangians with transformersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-16Full publication date if available
- Authors
-
Yong Sheng Koay, Rikard Enberg, Stefano Moretti, Eliel Camargo-MolinaList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.09729Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.09729Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.09729Direct OA link when available
- Concepts
-
Transformer, Physics, Particle physics, Statistical physics, Quantum mechanics, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406549437 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.09729 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.09729 |
| ids.openalex | https://openalex.org/W4406549437 |
| fwci | |
| type | preprint |
| title | Generating particle physics Lagrangians with transformers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13650 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.942799985408783 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5185635685920715 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C121332964 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5033795237541199 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[1].display_name | Physics |
| concepts[2].id | https://openalex.org/C109214941 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3525317311286926 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[2].display_name | Particle physics |
| concepts[3].id | https://openalex.org/C121864883 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32254621386528015 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[3].display_name | Statistical physics |
| concepts[4].id | https://openalex.org/C62520636 |
| concepts[4].level | 1 |
| concepts[4].score | 0.11325201392173767 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[4].display_name | Quantum mechanics |
| concepts[5].id | https://openalex.org/C165801399 |
| concepts[5].level | 2 |
| concepts[5].score | 0.06521832942962646 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[5].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.5185635685920715 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/physics |
| keywords[1].score | 0.5033795237541199 |
| keywords[1].display_name | Physics |
| keywords[2].id | https://openalex.org/keywords/particle-physics |
| keywords[2].score | 0.3525317311286926 |
| keywords[2].display_name | Particle physics |
| keywords[3].id | https://openalex.org/keywords/statistical-physics |
| keywords[3].score | 0.32254621386528015 |
| keywords[3].display_name | Statistical physics |
| keywords[4].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[4].score | 0.11325201392173767 |
| keywords[4].display_name | Quantum mechanics |
| keywords[5].id | https://openalex.org/keywords/voltage |
| keywords[5].score | 0.06521832942962646 |
| keywords[5].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.09729 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.09729 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.09729 |
| locations[1].id | doi:10.48550/arxiv.2501.09729 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.09729 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092171875 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8352-5341 |
| authorships[0].author.display_name | Yong Sheng Koay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Koay, Yong Sheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044188499 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0452-0671 |
| authorships[1].author.display_name | Rikard Enberg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Enberg, Rikard |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034676393 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8601-7246 |
| authorships[2].author.display_name | Stefano Moretti |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Moretti, Stefano |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114634096 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Eliel Camargo-Molina |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Camargo-Molina, Eliel |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.09729 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generating particle physics Lagrangians with transformers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13650 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.942799985408783 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Computational Physics and Python Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885, https://openalex.org/W2298861036 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.09729 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.09729 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.09729 |
| primary_location.id | pmh:oai:arXiv.org:2501.09729 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.09729 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.09729 |
| publication_date | 2025-01-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 46, 65 |
| abstract_inverted_index.-- | 49, 58 |
| abstract_inverted_index.An | 157 |
| abstract_inverted_index.By | 33 |
| abstract_inverted_index.In | 0, 13 |
| abstract_inverted_index.We | 70, 119, 146 |
| abstract_inverted_index.an | 122 |
| abstract_inverted_index.as | 36, 134, 140 |
| abstract_inverted_index.be | 52, 161 |
| abstract_inverted_index.in | 54, 76 |
| abstract_inverted_index.is | 91 |
| abstract_inverted_index.it | 141 |
| abstract_inverted_index.of | 16, 25, 30, 68, 124 |
| abstract_inverted_index.on | 72 |
| abstract_inverted_index.to | 7, 41, 51, 59, 64, 93, 102, 109, 143, 154 |
| abstract_inverted_index.up | 101 |
| abstract_inverted_index.we | 44 |
| abstract_inverted_index.The | 88 |
| abstract_inverted_index.and | 23, 137, 150 |
| abstract_inverted_index.at: | 163 |
| abstract_inverted_index.can | 160 |
| abstract_inverted_index.has | 130 |
| abstract_inverted_index.our | 31 |
| abstract_inverted_index.six | 103 |
| abstract_inverted_index.the | 14, 21, 26, 61, 73, 80, 107, 112, 128, 148, 155 |
| abstract_inverted_index.way | 6 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.laws | 9 |
| abstract_inverted_index.list | 67 |
| abstract_inverted_index.make | 147 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.such | 133 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.they | 19 |
| abstract_inverted_index.with | 99, 106 |
| abstract_inverted_index.(over | 97 |
| abstract_inverted_index.90\%) | 98 |
| abstract_inverted_index.Model | 82 |
| abstract_inverted_index.found | 162 |
| abstract_inverted_index.gauge | 86 |
| abstract_inverted_index.given | 66 |
| abstract_inverted_index.group | 135 |
| abstract_inverted_index.input | 125 |
| abstract_inverted_index.model | 48, 90, 129, 149 |
| abstract_inverted_index.shown | 92 |
| abstract_inverted_index.tasks | 57 |
| abstract_inverted_index.albeit | 115 |
| abstract_inverted_index.beyond | 111 |
| abstract_inverted_index.blocks | 29 |
| abstract_inverted_index.encode | 20 |
| abstract_inverted_index.matter | 104 |
| abstract_inverted_index.proven | 50 |
| abstract_inverted_index.report | 71 |
| abstract_inverted_index.within | 116 |
| abstract_inverted_index.achieve | 94 |
| abstract_inverted_index.context | 15 |
| abstract_inverted_index.fields, | 105 |
| abstract_inverted_index.learned | 142 |
| abstract_inverted_index.natural | 55 |
| abstract_inverted_index.predict | 60 |
| abstract_inverted_index.provide | 3 |
| abstract_inverted_index.similar | 40 |
| abstract_inverted_index.through | 121 |
| abstract_inverted_index.trained | 45 |
| abstract_inverted_index.Standard | 81 |
| abstract_inverted_index.analysis | 123 |
| abstract_inverted_index.behavior | 24 |
| abstract_inverted_index.building | 28 |
| abstract_inverted_index.capacity | 108 |
| abstract_inverted_index.complex, | 37 |
| abstract_inverted_index.concepts | 132 |
| abstract_inverted_index.datasets | 152 |
| abstract_inverted_index.describe | 8 |
| abstract_inverted_index.generate | 144 |
| abstract_inverted_index.language | 56 |
| abstract_inverted_index.particle | 17 |
| abstract_inverted_index.physical | 11 |
| abstract_inverted_index.physics, | 1, 18 |
| abstract_inverted_index.systems. | 12 |
| abstract_inverted_index.training | 113, 151 |
| abstract_inverted_index.treating | 34 |
| abstract_inverted_index.available | 153 |
| abstract_inverted_index.effective | 53 |
| abstract_inverted_index.governing | 10 |
| abstract_inverted_index.resulting | 89 |
| abstract_inverted_index.universe. | 32 |
| abstract_inverted_index.Lagrangian | 62 |
| abstract_inverted_index.accuracies | 96 |
| abstract_inverted_index.community. | 156 |
| abstract_inverted_index.constructs | 39 |
| abstract_inverted_index.embeddings | 126 |
| abstract_inverted_index.generalize | 110 |
| abstract_inverted_index.linguistic | 42 |
| abstract_inverted_index.operations | 139 |
| abstract_inverted_index.particles. | 69 |
| abstract_inverted_index.respecting | 79 |
| abstract_inverted_index.rule-based | 38 |
| abstract_inverted_index.systematic | 5 |
| abstract_inverted_index.Lagrangians | 2, 35, 78, 100 |
| abstract_inverted_index.conjugation | 138 |
| abstract_inverted_index.fundamental | 27 |
| abstract_inverted_index.interactive | 158 |
| abstract_inverted_index.performance | 75 |
| abstract_inverted_index.symmetries. | 87 |
| abstract_inverted_index.transformer | 47 |
| abstract_inverted_index.Lagrangians. | 145 |
| abstract_inverted_index.constraints. | 118 |
| abstract_inverted_index.constructing | 77 |
| abstract_inverted_index.expressions, | 43 |
| abstract_inverted_index.interactions | 22 |
| abstract_inverted_index.internalized | 131 |
| abstract_inverted_index.architectural | 117 |
| abstract_inverted_index.corresponding | 63 |
| abstract_inverted_index.demonstration | 159 |
| abstract_inverted_index.distribution, | 114 |
| abstract_inverted_index.transformer's | 74 |
| abstract_inverted_index.\mathrm{U}(1)$ | 85 |
| abstract_inverted_index.representations | 136 |
| abstract_inverted_index.\mathrm{SU}(2)\times | 84 |
| abstract_inverted_index.$\mathrm{SU}(3)\times | 83 |
| abstract_inverted_index.\url{https://huggingface.co/spaces/JoseEliel/generate-lagrangians}. | 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |