Generating Planning Feedback for Open-Ended Programming Exercises with LLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.08958
To complete an open-ended programming exercise, students need to both plan a high-level solution and implement it using the appropriate syntax. However, these problems are often autograded on the correctness of the final submission through test cases, and students cannot get feedback on their planning process. Large language models (LLM) may be able to generate this feedback by detecting the overall code structure even for submissions with syntax errors. To this end, we propose an approach that detects which high-level goals and patterns (i.e. programming plans) exist in a student program with LLMs. We show that both the full GPT-4o model and a small variant (GPT-4o-mini) can detect these plans with remarkable accuracy, outperforming baselines inspired by conventional approaches to code analysis. We further show that the smaller, cost-effective variant (GPT-4o-mini) achieves results on par with state-of-the-art (GPT-4o) after fine-tuning, creating promising implications for smaller models for real-time grading. These smaller models can be incorporated into autograders for open-ended code-writing exercises to provide feedback for students' implicit planning skills, even when their program is syntactically incorrect. Furthermore, LLMs may be useful in providing feedback for problems in other domains where students start with a set of high-level solution steps and iteratively compute the output, such as math and physics problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.08958
- https://arxiv.org/pdf/2504.08958
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415154351
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415154351Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.08958Digital Object Identifier
- Title
-
Generating Planning Feedback for Open-Ended Programming Exercises with LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Mehmet Arif Demirtaş, Claire Zheng, Max Fowler, Kathryn CunninghamList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.08958Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.08958Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.08958Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415154351 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.08958 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.08958 |
| ids.openalex | https://openalex.org/W4415154351 |
| fwci | |
| type | preprint |
| title | Generating Planning Feedback for Open-Ended Programming Exercises with LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11902 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9781000018119812 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[1].id | https://openalex.org/T10906 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9677000045776367 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI-based Problem Solving and Planning |
| topics[2].id | https://openalex.org/T10533 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9463000297546387 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1706 |
| topics[2].subfield.display_name | Computer Science Applications |
| topics[2].display_name | Teaching and Learning Programming |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.08958 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.08958 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.08958 |
| locations[1].id | doi:10.48550/arxiv.2504.08958 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.08958 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5011668727 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5674-5878 |
| authorships[0].author.display_name | Mehmet Arif Demirtaş |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Demirtaş, Mehmet Arif |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089769413 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Claire Zheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng, Claire |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091001653 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4730-447X |
| authorships[2].author.display_name | Max Fowler |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fowler, Max |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5011238152 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9702-2796 |
| authorships[3].author.display_name | Kathryn Cunningham |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Cunningham, Kathryn |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.08958 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Generating Planning Feedback for Open-Ended Programming Exercises with LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11902 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9781000018119812 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Intelligent Tutoring Systems and Adaptive Learning |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.08958 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.08958 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.08958 |
| primary_location.id | pmh:oai:arXiv.org:2504.08958 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.08958 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.08958 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 88, 102, 193 |
| abstract_inverted_index.To | 0, 69 |
| abstract_inverted_index.We | 93, 122 |
| abstract_inverted_index.an | 2, 74 |
| abstract_inverted_index.as | 205 |
| abstract_inverted_index.be | 51, 153, 179 |
| abstract_inverted_index.by | 57, 116 |
| abstract_inverted_index.in | 87, 181, 186 |
| abstract_inverted_index.is | 173 |
| abstract_inverted_index.it | 16 |
| abstract_inverted_index.of | 30, 195 |
| abstract_inverted_index.on | 27, 42, 133 |
| abstract_inverted_index.to | 8, 53, 119, 161 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.and | 14, 37, 81, 101, 199, 207 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.can | 106, 152 |
| abstract_inverted_index.for | 64, 143, 146, 157, 164, 184 |
| abstract_inverted_index.get | 40 |
| abstract_inverted_index.may | 50, 178 |
| abstract_inverted_index.par | 134 |
| abstract_inverted_index.set | 194 |
| abstract_inverted_index.the | 18, 28, 31, 59, 97, 126, 202 |
| abstract_inverted_index.LLMs | 177 |
| abstract_inverted_index.able | 52 |
| abstract_inverted_index.both | 9, 96 |
| abstract_inverted_index.code | 61, 120 |
| abstract_inverted_index.end, | 71 |
| abstract_inverted_index.even | 63, 169 |
| abstract_inverted_index.full | 98 |
| abstract_inverted_index.into | 155 |
| abstract_inverted_index.math | 206 |
| abstract_inverted_index.need | 7 |
| abstract_inverted_index.plan | 10 |
| abstract_inverted_index.show | 94, 124 |
| abstract_inverted_index.such | 204 |
| abstract_inverted_index.test | 35 |
| abstract_inverted_index.that | 76, 95, 125 |
| abstract_inverted_index.this | 55, 70 |
| abstract_inverted_index.when | 170 |
| abstract_inverted_index.with | 66, 91, 110, 135, 192 |
| abstract_inverted_index.(LLM) | 49 |
| abstract_inverted_index.(i.e. | 83 |
| abstract_inverted_index.LLMs. | 92 |
| abstract_inverted_index.Large | 46 |
| abstract_inverted_index.These | 149 |
| abstract_inverted_index.after | 138 |
| abstract_inverted_index.exist | 86 |
| abstract_inverted_index.final | 32 |
| abstract_inverted_index.goals | 80 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.other | 187 |
| abstract_inverted_index.plans | 109 |
| abstract_inverted_index.small | 103 |
| abstract_inverted_index.start | 191 |
| abstract_inverted_index.steps | 198 |
| abstract_inverted_index.their | 43, 171 |
| abstract_inverted_index.these | 22, 108 |
| abstract_inverted_index.using | 17 |
| abstract_inverted_index.where | 189 |
| abstract_inverted_index.which | 78 |
| abstract_inverted_index.GPT-4o | 99 |
| abstract_inverted_index.cannot | 39 |
| abstract_inverted_index.cases, | 36 |
| abstract_inverted_index.detect | 107 |
| abstract_inverted_index.models | 48, 145, 151 |
| abstract_inverted_index.plans) | 85 |
| abstract_inverted_index.syntax | 67 |
| abstract_inverted_index.useful | 180 |
| abstract_inverted_index.compute | 201 |
| abstract_inverted_index.detects | 77 |
| abstract_inverted_index.domains | 188 |
| abstract_inverted_index.errors. | 68 |
| abstract_inverted_index.further | 123 |
| abstract_inverted_index.output, | 203 |
| abstract_inverted_index.overall | 60 |
| abstract_inverted_index.physics | 208 |
| abstract_inverted_index.program | 90, 172 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.provide | 162 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.skills, | 168 |
| abstract_inverted_index.smaller | 144, 150 |
| abstract_inverted_index.student | 89 |
| abstract_inverted_index.syntax. | 20 |
| abstract_inverted_index.through | 34 |
| abstract_inverted_index.variant | 104, 129 |
| abstract_inverted_index.(GPT-4o) | 137 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.achieves | 131 |
| abstract_inverted_index.approach | 75 |
| abstract_inverted_index.complete | 1 |
| abstract_inverted_index.creating | 140 |
| abstract_inverted_index.feedback | 41, 56, 163, 183 |
| abstract_inverted_index.generate | 54 |
| abstract_inverted_index.grading. | 148 |
| abstract_inverted_index.implicit | 166 |
| abstract_inverted_index.inspired | 115 |
| abstract_inverted_index.language | 47 |
| abstract_inverted_index.patterns | 82 |
| abstract_inverted_index.planning | 44, 167 |
| abstract_inverted_index.problems | 23, 185 |
| abstract_inverted_index.process. | 45 |
| abstract_inverted_index.smaller, | 127 |
| abstract_inverted_index.solution | 13, 197 |
| abstract_inverted_index.students | 6, 38, 190 |
| abstract_inverted_index.accuracy, | 112 |
| abstract_inverted_index.analysis. | 121 |
| abstract_inverted_index.baselines | 114 |
| abstract_inverted_index.detecting | 58 |
| abstract_inverted_index.exercise, | 5 |
| abstract_inverted_index.exercises | 160 |
| abstract_inverted_index.implement | 15 |
| abstract_inverted_index.problems. | 209 |
| abstract_inverted_index.promising | 141 |
| abstract_inverted_index.providing | 182 |
| abstract_inverted_index.real-time | 147 |
| abstract_inverted_index.structure | 62 |
| abstract_inverted_index.students' | 165 |
| abstract_inverted_index.approaches | 118 |
| abstract_inverted_index.autograded | 26 |
| abstract_inverted_index.high-level | 12, 79, 196 |
| abstract_inverted_index.incorrect. | 175 |
| abstract_inverted_index.open-ended | 3, 158 |
| abstract_inverted_index.remarkable | 111 |
| abstract_inverted_index.submission | 33 |
| abstract_inverted_index.appropriate | 19 |
| abstract_inverted_index.autograders | 156 |
| abstract_inverted_index.correctness | 29 |
| abstract_inverted_index.iteratively | 200 |
| abstract_inverted_index.programming | 4, 84 |
| abstract_inverted_index.submissions | 65 |
| abstract_inverted_index.Furthermore, | 176 |
| abstract_inverted_index.code-writing | 159 |
| abstract_inverted_index.conventional | 117 |
| abstract_inverted_index.fine-tuning, | 139 |
| abstract_inverted_index.implications | 142 |
| abstract_inverted_index.incorporated | 154 |
| abstract_inverted_index.(GPT-4o-mini) | 105, 130 |
| abstract_inverted_index.outperforming | 113 |
| abstract_inverted_index.syntactically | 174 |
| abstract_inverted_index.cost-effective | 128 |
| abstract_inverted_index.state-of-the-art | 136 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |