Generating Scenery Images with Larger Variety According to User Descriptions Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/app112110224
In this paper, a framework based on generative adversarial networks is proposed to perform nature-scenery generation according to descriptions from the users. The desired place, time and seasons of the generated scenes can be specified with the help of text-to-image generation techniques. The framework improves and modifies the architecture of a generative adversarial network with attention models by adding the imagination models. The proposed attentional and imaginative generative network uses the hidden layer information to initialize the memory cell of the recurrent neural network to produce the desired photos. A data set containing different categories of scenery images is established to train the proposed system. The experiments validate that the proposed method is able to increase the quality and diversity of the generated images compared to the existing method. A possible application of road image generation for data augmentation is also demonstrated in the experimental results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app112110224
- https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212
- OA Status
- gold
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3208089552
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3208089552Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app112110224Digital Object Identifier
- Title
-
Generating Scenery Images with Larger Variety According to User DescriptionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-01Full publication date if available
- Authors
-
Hsu-Yung Cheng, Chih-Chang YuList of authors in order
- Landing page
-
https://doi.org/10.3390/app112110224Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212Direct OA link when available
- Concepts
-
Computer science, Generative grammar, Artificial intelligence, Image (mathematics), Set (abstract data type), Variety (cybernetics), Adversarial system, Generative adversarial network, Layer (electronics), Artificial neural network, Generative model, Pattern recognition (psychology), Computer vision, Organic chemistry, Chemistry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3208089552 |
|---|---|
| doi | https://doi.org/10.3390/app112110224 |
| ids.doi | https://doi.org/10.3390/app112110224 |
| ids.mag | 3208089552 |
| ids.openalex | https://openalex.org/W3208089552 |
| fwci | 0.0 |
| type | article |
| title | Generating Scenery Images with Larger Variety According to User Descriptions |
| awards[0].id | https://openalex.org/G780223214 |
| awards[0].funder_id | https://openalex.org/F4320323706 |
| awards[0].funder_award_id | 110-2221-E-008 -074 -MY2 |
| awards[0].funder_display_name | Ministry of Science and Technology, Israel |
| biblio.issue | 21 |
| biblio.volume | 11 |
| biblio.last_page | 10224 |
| biblio.first_page | 10224 |
| grants[0].funder | https://openalex.org/F4320323706 |
| grants[0].award_id | 110-2221-E-008 -074 -MY2 |
| grants[0].funder_display_name | Ministry of Science and Technology, Israel |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T10481 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9825999736785889 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computer Graphics and Visualization Techniques |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9621999859809875 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| funders[0].id | https://openalex.org/F4320323706 |
| funders[0].ror | https://ror.org/02heb2n75 |
| funders[0].display_name | Ministry of Science and Technology, Israel |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7453516721725464 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.700179934501648 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5933446884155273 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5763559341430664 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5635524988174438 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C136197465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5143786072731018 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[5].display_name | Variety (cybernetics) |
| concepts[6].id | https://openalex.org/C37736160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.510206937789917 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[6].display_name | Adversarial system |
| concepts[7].id | https://openalex.org/C2988773926 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5050447583198547 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[7].display_name | Generative adversarial network |
| concepts[8].id | https://openalex.org/C2779227376 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44017666578292847 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[8].display_name | Layer (electronics) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.434261679649353 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C167966045 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4295889735221863 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[10].display_name | Generative model |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39092037081718445 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36449167132377625 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C178790620 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[13].display_name | Organic chemistry |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7453516721725464 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.700179934501648 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5933446884155273 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.5763559341430664 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.5635524988174438 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/variety |
| keywords[5].score | 0.5143786072731018 |
| keywords[5].display_name | Variety (cybernetics) |
| keywords[6].id | https://openalex.org/keywords/adversarial-system |
| keywords[6].score | 0.510206937789917 |
| keywords[6].display_name | Adversarial system |
| keywords[7].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[7].score | 0.5050447583198547 |
| keywords[7].display_name | Generative adversarial network |
| keywords[8].id | https://openalex.org/keywords/layer |
| keywords[8].score | 0.44017666578292847 |
| keywords[8].display_name | Layer (electronics) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.434261679649353 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/generative-model |
| keywords[10].score | 0.4295889735221863 |
| keywords[10].display_name | Generative model |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.39092037081718445 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.36449167132377625 |
| keywords[12].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.3390/app112110224 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app112110224 |
| locations[1].id | pmh:oai:mdpi.com:/2076-3417/11/21/10224/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences; Volume 11; Issue 21; Pages: 10224 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/app112110224 |
| locations[2].id | pmh:oai:doaj.org/article:d4917a6f9c914dad8f72d117519c86a5 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences, Vol 11, Iss 21, p 10224 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/d4917a6f9c914dad8f72d117519c86a5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5028504321 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8342-7450 |
| authorships[0].author.display_name | Hsu-Yung Cheng |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I22265921 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, National Central University, 300 Jong-Da Rd., Jong-Li, Taoyuan 32001, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I22265921 |
| authorships[0].institutions[0].ror | https://ror.org/00944ve71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I22265921 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Central University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hsu-Yung Cheng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Information Engineering, National Central University, 300 Jong-Da Rd., Jong-Li, Taoyuan 32001, Taiwan |
| authorships[1].author.id | https://openalex.org/A5021766012 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1611-0223 |
| authorships[1].author.display_name | Chih-Chang Yu |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151221077 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information and Computer Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li, Taoyuan 32023, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I151221077 |
| authorships[1].institutions[0].ror | https://ror.org/02w8ws377 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151221077 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Chung Yuan Christian University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Chih-Chang Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information and Computer Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li, Taoyuan 32023, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-11-08T00:00:00 |
| display_name | Generating Scenery Images with Larger Variety According to User Descriptions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4391584540, https://openalex.org/W2888032422, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4395044357, https://openalex.org/W2996316059, https://openalex.org/W4287117424, https://openalex.org/W4387506531 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app112110224 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app112110224 |
| primary_location.id | doi:10.3390/app112110224 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/11/21/10224/pdf?version=1635759212 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app112110224 |
| publication_date | 2021-11-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2921353139, https://openalex.org/W2173520492, https://openalex.org/W2739748921, https://openalex.org/W6729767818, https://openalex.org/W2750699642, https://openalex.org/W2963522749, https://openalex.org/W2884719956, https://openalex.org/W2963561004, https://openalex.org/W2798844427, https://openalex.org/W2963413689, https://openalex.org/W6639118987, https://openalex.org/W2423557781, https://openalex.org/W2963470893, https://openalex.org/W2963073614, https://openalex.org/W2738588019, https://openalex.org/W6790709467, https://openalex.org/W2995505408, https://openalex.org/W2884065486, https://openalex.org/W2963327228, https://openalex.org/W1931639407, https://openalex.org/W6713645886, https://openalex.org/W2558834163, https://openalex.org/W2398118205, https://openalex.org/W2964024144, https://openalex.org/W2963966654, https://openalex.org/W2799215068, https://openalex.org/W2964268978, https://openalex.org/W2131774270, https://openalex.org/W4288083516, https://openalex.org/W2732026016, https://openalex.org/W6718379498, https://openalex.org/W2963981733, https://openalex.org/W2964182391, https://openalex.org/W2987132046, https://openalex.org/W2966687987, https://openalex.org/W3128607711, https://openalex.org/W2963373786, https://openalex.org/W3121480429 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 89, 129 |
| abstract_inverted_index.a | 3, 50 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.be | 33 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 142 |
| abstract_inverted_index.is | 10, 98, 112, 139 |
| abstract_inverted_index.of | 28, 38, 49, 79, 95, 120, 132 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.to | 12, 17, 74, 84, 100, 114, 125 |
| abstract_inverted_index.The | 22, 42, 62, 105 |
| abstract_inverted_index.and | 26, 45, 65, 118 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.for | 136 |
| abstract_inverted_index.set | 91 |
| abstract_inverted_index.the | 20, 29, 36, 47, 59, 70, 76, 80, 86, 102, 109, 116, 121, 126, 143 |
| abstract_inverted_index.able | 113 |
| abstract_inverted_index.also | 140 |
| abstract_inverted_index.cell | 78 |
| abstract_inverted_index.data | 90, 137 |
| abstract_inverted_index.from | 19 |
| abstract_inverted_index.help | 37 |
| abstract_inverted_index.road | 133 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.time | 25 |
| abstract_inverted_index.uses | 69 |
| abstract_inverted_index.with | 35, 54 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.image | 134 |
| abstract_inverted_index.layer | 72 |
| abstract_inverted_index.train | 101 |
| abstract_inverted_index.adding | 58 |
| abstract_inverted_index.hidden | 71 |
| abstract_inverted_index.images | 97, 123 |
| abstract_inverted_index.memory | 77 |
| abstract_inverted_index.method | 111 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.neural | 82 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.place, | 24 |
| abstract_inverted_index.scenes | 31 |
| abstract_inverted_index.users. | 21 |
| abstract_inverted_index.desired | 23, 87 |
| abstract_inverted_index.method. | 128 |
| abstract_inverted_index.models. | 61 |
| abstract_inverted_index.network | 53, 68, 83 |
| abstract_inverted_index.perform | 13 |
| abstract_inverted_index.photos. | 88 |
| abstract_inverted_index.produce | 85 |
| abstract_inverted_index.quality | 117 |
| abstract_inverted_index.scenery | 96 |
| abstract_inverted_index.seasons | 27 |
| abstract_inverted_index.system. | 104 |
| abstract_inverted_index.compared | 124 |
| abstract_inverted_index.existing | 127 |
| abstract_inverted_index.improves | 44 |
| abstract_inverted_index.increase | 115 |
| abstract_inverted_index.modifies | 46 |
| abstract_inverted_index.networks | 9 |
| abstract_inverted_index.possible | 130 |
| abstract_inverted_index.proposed | 11, 63, 103, 110 |
| abstract_inverted_index.results. | 145 |
| abstract_inverted_index.validate | 107 |
| abstract_inverted_index.according | 16 |
| abstract_inverted_index.attention | 55 |
| abstract_inverted_index.different | 93 |
| abstract_inverted_index.diversity | 119 |
| abstract_inverted_index.framework | 4, 43 |
| abstract_inverted_index.generated | 30, 122 |
| abstract_inverted_index.recurrent | 81 |
| abstract_inverted_index.specified | 34 |
| abstract_inverted_index.categories | 94 |
| abstract_inverted_index.containing | 92 |
| abstract_inverted_index.generation | 15, 40, 135 |
| abstract_inverted_index.generative | 7, 51, 67 |
| abstract_inverted_index.initialize | 75 |
| abstract_inverted_index.adversarial | 8, 52 |
| abstract_inverted_index.application | 131 |
| abstract_inverted_index.attentional | 64 |
| abstract_inverted_index.established | 99 |
| abstract_inverted_index.experiments | 106 |
| abstract_inverted_index.imagination | 60 |
| abstract_inverted_index.imaginative | 66 |
| abstract_inverted_index.information | 73 |
| abstract_inverted_index.techniques. | 41 |
| abstract_inverted_index.architecture | 48 |
| abstract_inverted_index.augmentation | 138 |
| abstract_inverted_index.demonstrated | 141 |
| abstract_inverted_index.descriptions | 18 |
| abstract_inverted_index.experimental | 144 |
| abstract_inverted_index.text-to-image | 39 |
| abstract_inverted_index.nature-scenery | 14 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5028504321 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I22265921 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.13446836 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |