Generation and analysis of independent fission yield covariances based on GEF model code Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1051/epjconf/202328100015
The fission yield data provided by the evaluated nuclear data files do not contain covariance information, which is not conducive to uncertainty analysis. To generate covariance information, the model parameters of the code GEF which describes the fission process are sampled and the independent fission yield samples are calculated. The covariances of independent fission yields of 235 U, 239 Pu, and 241 Pu thermal neutron-induced fissioning systems are generated individually based on the above samples. This method is verified by comparing the uncertainties of burnup-related responses based on fission yield samples calculated by GEF and based on fission yield samples generated with the covariances. The influence of correlations among fissioning systems is also quantified and the joint covariances among different fissioning systems calculated with GEF are demonstrated correct. In addition, the Bayesian Monte Carlo method is adopted to adjust the model parameters of GEF, and the numerical results prove the effectiveness of the adjustment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1051/epjconf/202328100015
- OA Status
- diamond
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361808028
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361808028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/epjconf/202328100015Digital Object Identifier
- Title
-
Generation and analysis of independent fission yield covariances based on GEF model codeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Zerun Lu, Tiejun Zu, Liangzhi Cao, Hongchun WuList of authors in order
- Landing page
-
https://doi.org/10.1051/epjconf/202328100015Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1051/epjconf/202328100015Direct OA link when available
- Concepts
-
Fission, Covariance, Nuclear data, Monte Carlo method, Yield (engineering), Fission product yield, Fission products, Code (set theory), Process (computing), Nuclear physics, Neutron, Statistical physics, Computer science, Mathematics, Physics, Statistics, Thermodynamics, Set (abstract data type), Programming language, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361808028 |
|---|---|
| doi | https://doi.org/10.1051/epjconf/202328100015 |
| ids.doi | https://doi.org/10.1051/epjconf/202328100015 |
| ids.openalex | https://openalex.org/W4361808028 |
| fwci | 0.51995027 |
| type | article |
| title | Generation and analysis of independent fission yield covariances based on GEF model code |
| biblio.issue | |
| biblio.volume | 281 |
| biblio.last_page | 00015 |
| biblio.first_page | 00015 |
| topics[0].id | https://openalex.org/T10597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Nuclear reactor physics and engineering |
| topics[1].id | https://openalex.org/T11242 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Nuclear Materials and Properties |
| topics[2].id | https://openalex.org/T11949 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Nuclear Physics and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12294094 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8448470830917358 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q929080 |
| concepts[0].display_name | Fission |
| concepts[1].id | https://openalex.org/C178650346 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6806356906890869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[1].display_name | Covariance |
| concepts[2].id | https://openalex.org/C2779281675 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6153932809829712 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7068046 |
| concepts[2].display_name | Nuclear data |
| concepts[3].id | https://openalex.org/C19499675 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5825297832489014 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[3].display_name | Monte Carlo method |
| concepts[4].id | https://openalex.org/C134121241 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5775377154350281 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[4].display_name | Yield (engineering) |
| concepts[5].id | https://openalex.org/C77016745 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5691832304000854 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q24267 |
| concepts[5].display_name | Fission product yield |
| concepts[6].id | https://openalex.org/C103522932 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5129732489585876 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q55611724 |
| concepts[6].display_name | Fission products |
| concepts[7].id | https://openalex.org/C2776760102 |
| concepts[7].level | 3 |
| concepts[7].score | 0.456453800201416 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[7].display_name | Code (set theory) |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41783440113067627 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C185544564 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40025341510772705 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[9].display_name | Nuclear physics |
| concepts[10].id | https://openalex.org/C152568617 |
| concepts[10].level | 2 |
| concepts[10].score | 0.39771658182144165 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2348 |
| concepts[10].display_name | Neutron |
| concepts[11].id | https://openalex.org/C121864883 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3614541292190552 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[11].display_name | Statistical physics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3360365033149719 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3199971318244934 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.29260045289993286 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.21972426772117615 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C97355855 |
| concepts[16].level | 1 |
| concepts[16].score | 0.06268024444580078 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[16].display_name | Thermodynamics |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/fission |
| keywords[0].score | 0.8448470830917358 |
| keywords[0].display_name | Fission |
| keywords[1].id | https://openalex.org/keywords/covariance |
| keywords[1].score | 0.6806356906890869 |
| keywords[1].display_name | Covariance |
| keywords[2].id | https://openalex.org/keywords/nuclear-data |
| keywords[2].score | 0.6153932809829712 |
| keywords[2].display_name | Nuclear data |
| keywords[3].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[3].score | 0.5825297832489014 |
| keywords[3].display_name | Monte Carlo method |
| keywords[4].id | https://openalex.org/keywords/yield |
| keywords[4].score | 0.5775377154350281 |
| keywords[4].display_name | Yield (engineering) |
| keywords[5].id | https://openalex.org/keywords/fission-product-yield |
| keywords[5].score | 0.5691832304000854 |
| keywords[5].display_name | Fission product yield |
| keywords[6].id | https://openalex.org/keywords/fission-products |
| keywords[6].score | 0.5129732489585876 |
| keywords[6].display_name | Fission products |
| keywords[7].id | https://openalex.org/keywords/code |
| keywords[7].score | 0.456453800201416 |
| keywords[7].display_name | Code (set theory) |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.41783440113067627 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/nuclear-physics |
| keywords[9].score | 0.40025341510772705 |
| keywords[9].display_name | Nuclear physics |
| keywords[10].id | https://openalex.org/keywords/neutron |
| keywords[10].score | 0.39771658182144165 |
| keywords[10].display_name | Neutron |
| keywords[11].id | https://openalex.org/keywords/statistical-physics |
| keywords[11].score | 0.3614541292190552 |
| keywords[11].display_name | Statistical physics |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3360365033149719 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.3199971318244934 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.29260045289993286 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.21972426772117615 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/thermodynamics |
| keywords[16].score | 0.06268024444580078 |
| keywords[16].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.1051/epjconf/202328100015 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19068271 |
| locations[0].source.issn | 2100-014X, 2101-6275 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2100-014X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EPJ Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EPJ Web of Conferences |
| locations[0].landing_page_url | http://doi.org/10.1051/epjconf/202328100015 |
| locations[1].id | pmh:oai:doaj.org/article:85c76f349e1b452a90a3781960eb7485 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | EPJ Web of Conferences, Vol 281, p 00015 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/85c76f349e1b452a90a3781960eb7485 |
| locations[2].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202328100015 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400744 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[2].source.host_organization | https://openalex.org/I8488066 |
| locations[2].source.host_organization_name | Chiba Institute of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | https://doi.org/10.1051/epjconf/202328100015 |
| locations[2].landing_page_url | |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5056399522 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zerun Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zerun Lu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027514762 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tiejun Zu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tiejun Zu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010129169 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Liangzhi Cao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liangzhi Cao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089255828 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6985-0519 |
| authorships[3].author.display_name | Hongchun Wu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hongchun Wu |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.1051/epjconf/202328100015 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generation and analysis of independent fission yield covariances based on GEF model code |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Nuclear reactor physics and engineering |
| related_works | https://openalex.org/W2086277428, https://openalex.org/W2005425013, https://openalex.org/W2065039770, https://openalex.org/W2094683180, https://openalex.org/W2037636580, https://openalex.org/W1995794223, https://openalex.org/W2068124260, https://openalex.org/W2185270099, https://openalex.org/W2040483461, https://openalex.org/W2621388039 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1051/epjconf/202328100015 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19068271 |
| best_oa_location.source.issn | 2100-014X, 2101-6275 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2100-014X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EPJ Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EPJ Web of Conferences |
| best_oa_location.landing_page_url | http://doi.org/10.1051/epjconf/202328100015 |
| primary_location.id | doi:10.1051/epjconf/202328100015 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19068271 |
| primary_location.source.issn | 2100-014X, 2101-6275 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2100-014X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EPJ Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EPJ Web of Conferences |
| primary_location.landing_page_url | http://doi.org/10.1051/epjconf/202328100015 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2900845160, https://openalex.org/W1976060451, https://openalex.org/W2151132611, https://openalex.org/W3083571095, https://openalex.org/W2190933804, https://openalex.org/W3082157502, https://openalex.org/W6611096153, https://openalex.org/W2794343335, https://openalex.org/W2109415008, https://openalex.org/W2740337409, https://openalex.org/W3043554932 |
| referenced_works_count | 11 |
| abstract_inverted_index.In | 128 |
| abstract_inverted_index.Pu | 62 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.U, | 57 |
| abstract_inverted_index.by | 5, 79, 92 |
| abstract_inverted_index.do | 11 |
| abstract_inverted_index.is | 17, 77, 111, 135 |
| abstract_inverted_index.of | 30, 51, 55, 83, 106, 142, 151 |
| abstract_inverted_index.on | 71, 87, 96 |
| abstract_inverted_index.to | 20, 137 |
| abstract_inverted_index.235 | 56 |
| abstract_inverted_index.239 | 58 |
| abstract_inverted_index.241 | 61 |
| abstract_inverted_index.GEF | 33, 93, 124 |
| abstract_inverted_index.Pu, | 59 |
| abstract_inverted_index.The | 0, 49, 104 |
| abstract_inverted_index.and | 41, 60, 94, 114, 144 |
| abstract_inverted_index.are | 39, 47, 67, 125 |
| abstract_inverted_index.not | 12, 18 |
| abstract_inverted_index.the | 6, 27, 31, 36, 42, 72, 81, 102, 115, 130, 139, 145, 149, 152 |
| abstract_inverted_index.GEF, | 143 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.code | 32 |
| abstract_inverted_index.data | 3, 9 |
| abstract_inverted_index.with | 101, 123 |
| abstract_inverted_index.Carlo | 133 |
| abstract_inverted_index.Monte | 132 |
| abstract_inverted_index.above | 73 |
| abstract_inverted_index.among | 108, 118 |
| abstract_inverted_index.based | 70, 86, 95 |
| abstract_inverted_index.files | 10 |
| abstract_inverted_index.joint | 116 |
| abstract_inverted_index.model | 28, 140 |
| abstract_inverted_index.prove | 148 |
| abstract_inverted_index.which | 16, 34 |
| abstract_inverted_index.yield | 2, 45, 89, 98 |
| abstract_inverted_index.adjust | 138 |
| abstract_inverted_index.method | 76, 134 |
| abstract_inverted_index.yields | 54 |
| abstract_inverted_index.adopted | 136 |
| abstract_inverted_index.contain | 13 |
| abstract_inverted_index.fission | 1, 37, 44, 53, 88, 97 |
| abstract_inverted_index.nuclear | 8 |
| abstract_inverted_index.process | 38 |
| abstract_inverted_index.results | 147 |
| abstract_inverted_index.sampled | 40 |
| abstract_inverted_index.samples | 46, 90, 99 |
| abstract_inverted_index.systems | 66, 110, 121 |
| abstract_inverted_index.thermal | 63 |
| abstract_inverted_index.Bayesian | 131 |
| abstract_inverted_index.correct. | 127 |
| abstract_inverted_index.generate | 24 |
| abstract_inverted_index.provided | 4 |
| abstract_inverted_index.samples. | 74 |
| abstract_inverted_index.verified | 78 |
| abstract_inverted_index.addition, | 129 |
| abstract_inverted_index.analysis. | 22 |
| abstract_inverted_index.comparing | 80 |
| abstract_inverted_index.conducive | 19 |
| abstract_inverted_index.describes | 35 |
| abstract_inverted_index.different | 119 |
| abstract_inverted_index.evaluated | 7 |
| abstract_inverted_index.generated | 68, 100 |
| abstract_inverted_index.influence | 105 |
| abstract_inverted_index.numerical | 146 |
| abstract_inverted_index.responses | 85 |
| abstract_inverted_index.calculated | 91, 122 |
| abstract_inverted_index.covariance | 14, 25 |
| abstract_inverted_index.fissioning | 65, 109, 120 |
| abstract_inverted_index.parameters | 29, 141 |
| abstract_inverted_index.quantified | 113 |
| abstract_inverted_index.adjustment. | 153 |
| abstract_inverted_index.calculated. | 48 |
| abstract_inverted_index.covariances | 50, 117 |
| abstract_inverted_index.independent | 43, 52 |
| abstract_inverted_index.uncertainty | 21 |
| abstract_inverted_index.correlations | 107 |
| abstract_inverted_index.covariances. | 103 |
| abstract_inverted_index.demonstrated | 126 |
| abstract_inverted_index.individually | 69 |
| abstract_inverted_index.information, | 15, 26 |
| abstract_inverted_index.effectiveness | 150 |
| abstract_inverted_index.uncertainties | 82 |
| abstract_inverted_index.burnup-related | 84 |
| abstract_inverted_index.neutron-induced | 64 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.74081123 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |