Generative Adversarial Networks for Labelled Vibration Data Generation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.08195
As Structural Health Monitoring (SHM) being implemented more over the years, the use of operational modal analysis of civil structures has become more significant for the assessment and evaluation of engineering structures. Machine Learning (ML) and Deep Learning (DL) algorithms have been in use for structural damage diagnostics of civil structures in the last couple of decades. While collecting vibration data from civil structures is a challenging and expensive task for both undamaged and damaged cases, in this paper, the authors are introducing Generative Adversarial Networks (GAN) that is built on the Deep Convolutional Neural Network (DCNN) and using Wasserstein Distance for generating artificial labelled data to be used for structural damage diagnostic purposes. The authors named the developed model 1D W-DCGAN and successfully generated vibration data which is very similar to the input. The methodology presented in this paper will pave the way for vibration data generation for numerous future applications in the SHM domain.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2112.08195
- https://arxiv.org/pdf/2112.08195
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226219999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226219999Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2112.08195Digital Object Identifier
- Title
-
Generative Adversarial Networks for Labelled Vibration Data GenerationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-07Full publication date if available
- Authors
-
Furkan Luleci, F. Necati Çatbaş, Onur AvcıList of authors in order
- Landing page
-
https://arxiv.org/abs/2112.08195Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2112.08195Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2112.08195Direct OA link when available
- Concepts
-
Generative grammar, Modal, Structural health monitoring, Computer science, Adversarial system, Convolutional neural network, Deep learning, Vibration, Artificial intelligence, Task (project management), Domain (mathematical analysis), Generative adversarial network, Artificial neural network, Machine learning, Modal analysis, Structural engineering, Engineering, Systems engineering, Acoustics, Mathematics, Chemistry, Polymer chemistry, Physics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226219999 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2112.08195 |
| ids.doi | https://doi.org/10.48550/arxiv.2112.08195 |
| ids.openalex | https://openalex.org/W4226219999 |
| fwci | 0.13648051 |
| type | preprint |
| title | Generative Adversarial Networks for Labelled Vibration Data Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T11609 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.988099992275238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Geophysical Methods and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7143710255622864 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C71139939 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6665281653404236 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[1].display_name | Modal |
| concepts[2].id | https://openalex.org/C2776247918 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6629174947738647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423713 |
| concepts[2].display_name | Structural health monitoring |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6427645087242126 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C37736160 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6325836181640625 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[4].display_name | Adversarial system |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6280425786972046 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.611511766910553 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C198394728 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5926594734191895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3695508 |
| concepts[7].display_name | Vibration |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5894212126731873 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5500860214233398 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C36503486 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5238242745399475 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[10].display_name | Domain (mathematical analysis) |
| concepts[11].id | https://openalex.org/C2988773926 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4991745948791504 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[11].display_name | Generative adversarial network |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.48555323481559753 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.42446184158325195 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C104286136 |
| concepts[14].level | 3 |
| concepts[14].score | 0.41489654779434204 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1416137 |
| concepts[14].display_name | Modal analysis |
| concepts[15].id | https://openalex.org/C66938386 |
| concepts[15].level | 1 |
| concepts[15].score | 0.30908095836639404 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[15].display_name | Structural engineering |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.2526394724845886 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C201995342 |
| concepts[17].level | 1 |
| concepts[17].score | 0.18066376447677612 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[17].display_name | Systems engineering |
| concepts[18].id | https://openalex.org/C24890656 |
| concepts[18].level | 1 |
| concepts[18].score | 0.07656842470169067 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[18].display_name | Acoustics |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.07652062177658081 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C188027245 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[21].display_name | Polymer chemistry |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| concepts[23].id | https://openalex.org/C134306372 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[23].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7143710255622864 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/modal |
| keywords[1].score | 0.6665281653404236 |
| keywords[1].display_name | Modal |
| keywords[2].id | https://openalex.org/keywords/structural-health-monitoring |
| keywords[2].score | 0.6629174947738647 |
| keywords[2].display_name | Structural health monitoring |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6427645087242126 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/adversarial-system |
| keywords[4].score | 0.6325836181640625 |
| keywords[4].display_name | Adversarial system |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.6280425786972046 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.611511766910553 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/vibration |
| keywords[7].score | 0.5926594734191895 |
| keywords[7].display_name | Vibration |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.5894212126731873 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.5500860214233398 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/domain |
| keywords[10].score | 0.5238242745399475 |
| keywords[10].display_name | Domain (mathematical analysis) |
| keywords[11].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[11].score | 0.4991745948791504 |
| keywords[11].display_name | Generative adversarial network |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.48555323481559753 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.42446184158325195 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/modal-analysis |
| keywords[14].score | 0.41489654779434204 |
| keywords[14].display_name | Modal analysis |
| keywords[15].id | https://openalex.org/keywords/structural-engineering |
| keywords[15].score | 0.30908095836639404 |
| keywords[15].display_name | Structural engineering |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.2526394724845886 |
| keywords[16].display_name | Engineering |
| keywords[17].id | https://openalex.org/keywords/systems-engineering |
| keywords[17].score | 0.18066376447677612 |
| keywords[17].display_name | Systems engineering |
| keywords[18].id | https://openalex.org/keywords/acoustics |
| keywords[18].score | 0.07656842470169067 |
| keywords[18].display_name | Acoustics |
| keywords[19].id | https://openalex.org/keywords/mathematics |
| keywords[19].score | 0.07652062177658081 |
| keywords[19].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2112.08195 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2112.08195 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2112.08195 |
| locations[1].id | doi:10.48550/arxiv.2112.08195 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2112.08195 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020084538 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5265-6771 |
| authorships[0].author.display_name | Furkan Luleci |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luleci, Furkan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071812268 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9255-9976 |
| authorships[1].author.display_name | F. Necati Çatbaş |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Catbas, F. Necati |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087538865 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0221-7126 |
| authorships[2].author.display_name | Onur Avcı |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Avci, Onur |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2112.08195 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative Adversarial Networks for Labelled Vibration Data Generation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2888032422, https://openalex.org/W3156763702, https://openalex.org/W4385421777, https://openalex.org/W4377980832, https://openalex.org/W2897769091, https://openalex.org/W2971552217, https://openalex.org/W4297411772, https://openalex.org/W2845413374, https://openalex.org/W4226298148, https://openalex.org/W3005996785 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2112.08195 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2112.08195 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2112.08195 |
| primary_location.id | pmh:oai:arXiv.org:2112.08195 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2112.08195 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2112.08195 |
| publication_date | 2021-12-07 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 65 |
| abstract_inverted_index.1D | 120 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.be | 107 |
| abstract_inverted_index.in | 42, 51, 76, 137, 152 |
| abstract_inverted_index.is | 64, 88, 128 |
| abstract_inverted_index.of | 13, 17, 29, 48, 55 |
| abstract_inverted_index.on | 90 |
| abstract_inverted_index.to | 106, 131 |
| abstract_inverted_index.SHM | 154 |
| abstract_inverted_index.The | 114, 134 |
| abstract_inverted_index.and | 27, 35, 67, 73, 97, 122 |
| abstract_inverted_index.are | 81 |
| abstract_inverted_index.for | 24, 44, 70, 101, 109, 144, 148 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.the | 9, 11, 25, 52, 79, 91, 117, 132, 142, 153 |
| abstract_inverted_index.use | 12, 43 |
| abstract_inverted_index.way | 143 |
| abstract_inverted_index.(DL) | 38 |
| abstract_inverted_index.(ML) | 34 |
| abstract_inverted_index.Deep | 36, 92 |
| abstract_inverted_index.been | 41 |
| abstract_inverted_index.both | 71 |
| abstract_inverted_index.data | 60, 105, 126, 146 |
| abstract_inverted_index.from | 61 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.last | 53 |
| abstract_inverted_index.more | 7, 22 |
| abstract_inverted_index.over | 8 |
| abstract_inverted_index.pave | 141 |
| abstract_inverted_index.task | 69 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.this | 77, 138 |
| abstract_inverted_index.used | 108 |
| abstract_inverted_index.very | 129 |
| abstract_inverted_index.will | 140 |
| abstract_inverted_index.(GAN) | 86 |
| abstract_inverted_index.(SHM) | 4 |
| abstract_inverted_index.While | 57 |
| abstract_inverted_index.being | 5 |
| abstract_inverted_index.built | 89 |
| abstract_inverted_index.civil | 18, 49, 62 |
| abstract_inverted_index.modal | 15 |
| abstract_inverted_index.model | 119 |
| abstract_inverted_index.named | 116 |
| abstract_inverted_index.paper | 139 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.which | 127 |
| abstract_inverted_index.(DCNN) | 96 |
| abstract_inverted_index.Health | 2 |
| abstract_inverted_index.Neural | 94 |
| abstract_inverted_index.become | 21 |
| abstract_inverted_index.cases, | 75 |
| abstract_inverted_index.couple | 54 |
| abstract_inverted_index.damage | 46, 111 |
| abstract_inverted_index.future | 150 |
| abstract_inverted_index.input. | 133 |
| abstract_inverted_index.paper, | 78 |
| abstract_inverted_index.years, | 10 |
| abstract_inverted_index.Machine | 32 |
| abstract_inverted_index.Network | 95 |
| abstract_inverted_index.W-DCGAN | 121 |
| abstract_inverted_index.authors | 80, 115 |
| abstract_inverted_index.damaged | 74 |
| abstract_inverted_index.domain. | 155 |
| abstract_inverted_index.similar | 130 |
| abstract_inverted_index.Distance | 100 |
| abstract_inverted_index.Learning | 33, 37 |
| abstract_inverted_index.Networks | 85 |
| abstract_inverted_index.analysis | 16 |
| abstract_inverted_index.decades. | 56 |
| abstract_inverted_index.labelled | 104 |
| abstract_inverted_index.numerous | 149 |
| abstract_inverted_index.developed | 118 |
| abstract_inverted_index.expensive | 68 |
| abstract_inverted_index.generated | 124 |
| abstract_inverted_index.presented | 136 |
| abstract_inverted_index.purposes. | 113 |
| abstract_inverted_index.undamaged | 72 |
| abstract_inverted_index.vibration | 59, 125, 145 |
| abstract_inverted_index.Generative | 83 |
| abstract_inverted_index.Monitoring | 3 |
| abstract_inverted_index.Structural | 1 |
| abstract_inverted_index.algorithms | 39 |
| abstract_inverted_index.artificial | 103 |
| abstract_inverted_index.assessment | 26 |
| abstract_inverted_index.collecting | 58 |
| abstract_inverted_index.diagnostic | 112 |
| abstract_inverted_index.evaluation | 28 |
| abstract_inverted_index.generating | 102 |
| abstract_inverted_index.generation | 147 |
| abstract_inverted_index.structural | 45, 110 |
| abstract_inverted_index.structures | 19, 50, 63 |
| abstract_inverted_index.Adversarial | 84 |
| abstract_inverted_index.Wasserstein | 99 |
| abstract_inverted_index.challenging | 66 |
| abstract_inverted_index.diagnostics | 47 |
| abstract_inverted_index.engineering | 30 |
| abstract_inverted_index.implemented | 6 |
| abstract_inverted_index.introducing | 82 |
| abstract_inverted_index.methodology | 135 |
| abstract_inverted_index.operational | 14 |
| abstract_inverted_index.significant | 23 |
| abstract_inverted_index.structures. | 31 |
| abstract_inverted_index.applications | 151 |
| abstract_inverted_index.successfully | 123 |
| abstract_inverted_index.Convolutional | 93 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.4902485 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |