Generative Adversarial Training for Supervised and Semi-supervised Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fnbot.2022.859610
Neural networks have played critical roles in many research fields. The recently proposed adversarial training (AT) can improve the generalization ability of neural networks by adding intentional perturbations in the training process, but sometimes still fail to generate worst-case perturbations, thus resulting in limited improvement. Instead of designing a specific smoothness function and seeking an approximate solution used in existing AT methods, we propose a new training methodology, named Generative AT (GAT) in this article, for supervised and semi-supervised learning. The key idea of GAT is to formulate the learning task as a minimax game, in which the perturbation generator aims to yield the worst-case perturbations that maximize the deviation of output distribution, while the target classifier is to minimize the impact of this perturbation and prediction error. To solve this minimax optimization problem, a new adversarial loss function is constructed based on the cross-entropy measure. As a result, the smoothness and confidence of the model are both greatly improved. Moreover, we develop a trajectory-preserving-based alternating update strategy to enable the stable training of GAT. Numerous experiments conducted on benchmark datasets clearly demonstrate that the proposed GAT significantly outperforms the state-of-the-art AT methods in terms of supervised and semi-supervised learning tasks, especially when the number of labeled examples is rather small in semi-supervised learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fnbot.2022.859610
- https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdf
- OA Status
- gold
- Cited By
- 5
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220955967
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220955967Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fnbot.2022.859610Digital Object Identifier
- Title
-
Generative Adversarial Training for Supervised and Semi-supervised LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-24Full publication date if available
- Authors
-
Xianmin Wang, Jing Li, Qi Liu, Wenpeng Zhao, Zuoyong Li, Wenhao WangList of authors in order
- Landing page
-
https://doi.org/10.3389/fnbot.2022.859610Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdfDirect OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligence, Minimax, Generative grammar, Semi-supervised learning, Adversarial system, Supervised learning, Artificial neural network, Classifier (UML), Mathematical optimization, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220955967 |
|---|---|
| doi | https://doi.org/10.3389/fnbot.2022.859610 |
| ids.doi | https://doi.org/10.3389/fnbot.2022.859610 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35401139 |
| ids.openalex | https://openalex.org/W4220955967 |
| fwci | 0.9789941 |
| type | article |
| title | Generative Adversarial Training for Supervised and Semi-supervised Learning |
| awards[0].id | https://openalex.org/G4597454957 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62072127 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G514118021 |
| awards[1].funder_id | https://openalex.org/F4320321921 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2020A1515010423 |
| awards[1].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[2].id | https://openalex.org/G630235142 |
| awards[2].funder_id | https://openalex.org/F4320335480 |
| awards[2].display_name | |
| awards[2].funder_award_id | 202002030131 |
| awards[2].funder_display_name | Guangzhou Municipal Science and Technology Project |
| awards[3].id | https://openalex.org/G2912831102 |
| awards[3].funder_id | https://openalex.org/F4320336607 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2019A1515110213 |
| awards[3].funder_display_name | Natural Science Foundation of Guangdong Province for Distinguished Young Scholars |
| awards[4].id | https://openalex.org/G6858235307 |
| awards[4].funder_id | https://openalex.org/F4320335480 |
| awards[4].display_name | |
| awards[4].funder_award_id | 201904010493 |
| awards[4].funder_display_name | Guangzhou Municipal Science and Technology Project |
| awards[5].id | https://openalex.org/G7576591565 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 62002076 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 16 |
| biblio.last_page | 859610 |
| biblio.first_page | 859610 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321921 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Guangdong Province |
| funders[2].id | https://openalex.org/F4320335480 |
| funders[2].ror | |
| funders[2].display_name | Guangzhou Municipal Science and Technology Project |
| funders[3].id | https://openalex.org/F4320336607 |
| funders[3].ror | |
| funders[3].display_name | Natural Science Foundation of Guangdong Province for Distinguished Young Scholars |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7946546077728271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6906242966651917 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6559332609176636 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C149728462 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6235114336013794 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q751319 |
| concepts[3].display_name | Minimax |
| concepts[4].id | https://openalex.org/C39890363 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5009725093841553 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[4].display_name | Generative grammar |
| concepts[5].id | https://openalex.org/C58973888 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4833821654319763 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[5].display_name | Semi-supervised learning |
| concepts[6].id | https://openalex.org/C37736160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4792071282863617 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[6].display_name | Adversarial system |
| concepts[7].id | https://openalex.org/C136389625 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47739332914352417 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[7].display_name | Supervised learning |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45369580388069153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C95623464 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44789087772369385 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[9].display_name | Classifier (UML) |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2501562237739563 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1529887616634369 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7946546077728271 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6906242966651917 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6559332609176636 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/minimax |
| keywords[3].score | 0.6235114336013794 |
| keywords[3].display_name | Minimax |
| keywords[4].id | https://openalex.org/keywords/generative-grammar |
| keywords[4].score | 0.5009725093841553 |
| keywords[4].display_name | Generative grammar |
| keywords[5].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[5].score | 0.4833821654319763 |
| keywords[5].display_name | Semi-supervised learning |
| keywords[6].id | https://openalex.org/keywords/adversarial-system |
| keywords[6].score | 0.4792071282863617 |
| keywords[6].display_name | Adversarial system |
| keywords[7].id | https://openalex.org/keywords/supervised-learning |
| keywords[7].score | 0.47739332914352417 |
| keywords[7].display_name | Supervised learning |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.45369580388069153 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/classifier |
| keywords[9].score | 0.44789087772369385 |
| keywords[9].display_name | Classifier (UML) |
| keywords[10].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[10].score | 0.2501562237739563 |
| keywords[10].display_name | Mathematical optimization |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.1529887616634369 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3389/fnbot.2022.859610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S115606517 |
| locations[0].source.issn | 1662-5218 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-5218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neurorobotics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neurorobotics |
| locations[0].landing_page_url | https://doi.org/10.3389/fnbot.2022.859610 |
| locations[1].id | pmid:35401139 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in neurorobotics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35401139 |
| locations[2].id | pmh:oai:doaj.org/article:9177b0ce2ce64e069db1c8680fd207b0 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Neurorobotics, Vol 16 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/9177b0ce2ce64e069db1c8680fd207b0 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8988301 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Neurorobot |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8988301 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5020675795 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3480-8780 |
| authorships[0].author.display_name | Xianmin Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37987034 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I37987034 |
| authorships[0].institutions[0].ror | https://ror.org/05ar8rn06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37987034 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianmin Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5100336868 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0288-7296 |
| authorships[1].author.display_name | Jing Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[1].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[1].affiliations[1].raw_affiliation_string | State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I37987034 |
| authorships[1].affiliations[2].raw_affiliation_string | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I37987034 |
| authorships[1].institutions[1].ror | https://ror.org/05ar8rn06 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I37987034 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Guangzhou University |
| authorships[1].institutions[2].id | https://openalex.org/I4210156404 |
| authorships[1].institutions[2].ror | https://ror.org/04r53se39 |
| authorships[1].institutions[2].type | facility |
| authorships[1].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[1].institutions[2].country_code | CN |
| authorships[1].institutions[2].display_name | Institute of Information Engineering |
| authorships[1].institutions[3].id | https://openalex.org/I354108 |
| authorships[1].institutions[3].ror | https://ror.org/00s7tkw17 |
| authorships[1].institutions[3].type | education |
| authorships[1].institutions[3].lineage | https://openalex.org/I354108 |
| authorships[1].institutions[3].country_code | CN |
| authorships[1].institutions[3].display_name | Minjiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jing Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China, Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China, State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5100453144 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5378-6404 |
| authorships[2].author.display_name | Qi Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37987034 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I37987034 |
| authorships[2].institutions[0].ror | https://ror.org/05ar8rn06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37987034 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qi Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5101178537 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wenpeng Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37987034 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I37987034 |
| authorships[3].institutions[0].ror | https://ror.org/05ar8rn06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37987034 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangzhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenpeng Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China |
| authorships[4].author.id | https://openalex.org/A5091320821 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0952-9915 |
| authorships[4].author.display_name | Zuoyong Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[4].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I354108 |
| authorships[4].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Minjiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zuoyong Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China |
| authorships[5].author.id | https://openalex.org/A5100390305 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7294-2724 |
| authorships[5].author.display_name | Wenhao Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210156404 |
| authorships[5].institutions[1].ror | https://ror.org/04r53se39 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Institute of Information Engineering |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wenhao Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative Adversarial Training for Supervised and Semi-supervised Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4283320637, https://openalex.org/W1586607209, https://openalex.org/W122912556, https://openalex.org/W4312414840, https://openalex.org/W2621411691, https://openalex.org/W2271357838, https://openalex.org/W2556866732, https://openalex.org/W2794908468, https://openalex.org/W2328989934, https://openalex.org/W2348322200 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fnbot.2022.859610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S115606517 |
| best_oa_location.source.issn | 1662-5218 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-5218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neurorobotics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neurorobotics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fnbot.2022.859610 |
| primary_location.id | doi:10.3389/fnbot.2022.859610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S115606517 |
| primary_location.source.issn | 1662-5218 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-5218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neurorobotics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neurorobotics |
| primary_location.landing_page_url | https://doi.org/10.3389/fnbot.2022.859610 |
| publication_date | 2022-03-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6786054437, https://openalex.org/W6738597727, https://openalex.org/W3162915151, https://openalex.org/W3186723494, https://openalex.org/W6747220948, https://openalex.org/W4206483828, https://openalex.org/W3127647470, https://openalex.org/W6640425456, https://openalex.org/W6681588610, https://openalex.org/W4206211217, https://openalex.org/W3212903786, https://openalex.org/W6675944832, https://openalex.org/W3196353935, https://openalex.org/W6745910872, https://openalex.org/W6739868092, https://openalex.org/W2964159205, https://openalex.org/W2145339207, https://openalex.org/W3201415876, https://openalex.org/W6718379498, https://openalex.org/W6744890726, https://openalex.org/W6637162671, https://openalex.org/W2620038827, https://openalex.org/W6844138650, https://openalex.org/W2930249865, https://openalex.org/W3193978175, https://openalex.org/W3047753861, https://openalex.org/W3153539640, https://openalex.org/W2963178695, https://openalex.org/W4205426897, https://openalex.org/W3044192339, https://openalex.org/W6704282318, https://openalex.org/W2559655401, https://openalex.org/W2612690371, https://openalex.org/W2951970475, https://openalex.org/W4236965008, https://openalex.org/W2316922153 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 48, 64, 92, 134, 147, 163 |
| abstract_inverted_index.AT | 60, 70, 191 |
| abstract_inverted_index.As | 146 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 6, 28, 42, 58, 72, 95, 193, 211 |
| abstract_inverted_index.is | 85, 117, 139, 208 |
| abstract_inverted_index.of | 21, 46, 83, 110, 122, 153, 173, 195, 205 |
| abstract_inverted_index.on | 142, 178 |
| abstract_inverted_index.to | 36, 86, 101, 118, 168 |
| abstract_inverted_index.we | 62, 161 |
| abstract_inverted_index.GAT | 84, 186 |
| abstract_inverted_index.The | 10, 80 |
| abstract_inverted_index.and | 52, 77, 125, 151, 197 |
| abstract_inverted_index.are | 156 |
| abstract_inverted_index.but | 32 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.for | 75 |
| abstract_inverted_index.key | 81 |
| abstract_inverted_index.new | 65, 135 |
| abstract_inverted_index.the | 18, 29, 88, 97, 103, 108, 114, 120, 143, 149, 154, 170, 184, 189, 203 |
| abstract_inverted_index.(AT) | 15 |
| abstract_inverted_index.GAT. | 174 |
| abstract_inverted_index.aims | 100 |
| abstract_inverted_index.both | 157 |
| abstract_inverted_index.fail | 35 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.idea | 82 |
| abstract_inverted_index.loss | 137 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.task | 90 |
| abstract_inverted_index.that | 106, 183 |
| abstract_inverted_index.this | 73, 123, 130 |
| abstract_inverted_index.thus | 40 |
| abstract_inverted_index.used | 57 |
| abstract_inverted_index.when | 202 |
| abstract_inverted_index.(GAT) | 71 |
| abstract_inverted_index.based | 141 |
| abstract_inverted_index.game, | 94 |
| abstract_inverted_index.model | 155 |
| abstract_inverted_index.named | 68 |
| abstract_inverted_index.roles | 5 |
| abstract_inverted_index.small | 210 |
| abstract_inverted_index.solve | 129 |
| abstract_inverted_index.still | 34 |
| abstract_inverted_index.terms | 194 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.while | 113 |
| abstract_inverted_index.yield | 102 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.adding | 25 |
| abstract_inverted_index.enable | 169 |
| abstract_inverted_index.error. | 127 |
| abstract_inverted_index.impact | 121 |
| abstract_inverted_index.neural | 22 |
| abstract_inverted_index.number | 204 |
| abstract_inverted_index.output | 111 |
| abstract_inverted_index.played | 3 |
| abstract_inverted_index.rather | 209 |
| abstract_inverted_index.stable | 171 |
| abstract_inverted_index.target | 115 |
| abstract_inverted_index.tasks, | 200 |
| abstract_inverted_index.update | 166 |
| abstract_inverted_index.Instead | 45 |
| abstract_inverted_index.ability | 20 |
| abstract_inverted_index.clearly | 181 |
| abstract_inverted_index.develop | 162 |
| abstract_inverted_index.fields. | 9 |
| abstract_inverted_index.greatly | 158 |
| abstract_inverted_index.improve | 17 |
| abstract_inverted_index.labeled | 206 |
| abstract_inverted_index.limited | 43 |
| abstract_inverted_index.methods | 192 |
| abstract_inverted_index.minimax | 93, 131 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.result, | 148 |
| abstract_inverted_index.seeking | 53 |
| abstract_inverted_index.Numerous | 175 |
| abstract_inverted_index.article, | 74 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.examples | 207 |
| abstract_inverted_index.existing | 59 |
| abstract_inverted_index.function | 51, 138 |
| abstract_inverted_index.generate | 37 |
| abstract_inverted_index.learning | 89, 199 |
| abstract_inverted_index.maximize | 107 |
| abstract_inverted_index.measure. | 145 |
| abstract_inverted_index.methods, | 61 |
| abstract_inverted_index.minimize | 119 |
| abstract_inverted_index.networks | 1, 23 |
| abstract_inverted_index.problem, | 133 |
| abstract_inverted_index.process, | 31 |
| abstract_inverted_index.proposed | 12, 185 |
| abstract_inverted_index.recently | 11 |
| abstract_inverted_index.research | 8 |
| abstract_inverted_index.solution | 56 |
| abstract_inverted_index.specific | 49 |
| abstract_inverted_index.strategy | 167 |
| abstract_inverted_index.training | 14, 30, 66, 172 |
| abstract_inverted_index.Moreover, | 160 |
| abstract_inverted_index.benchmark | 179 |
| abstract_inverted_index.conducted | 177 |
| abstract_inverted_index.designing | 47 |
| abstract_inverted_index.deviation | 109 |
| abstract_inverted_index.formulate | 87 |
| abstract_inverted_index.generator | 99 |
| abstract_inverted_index.improved. | 159 |
| abstract_inverted_index.learning. | 79, 213 |
| abstract_inverted_index.resulting | 41 |
| abstract_inverted_index.sometimes | 33 |
| abstract_inverted_index.Generative | 69 |
| abstract_inverted_index.classifier | 116 |
| abstract_inverted_index.confidence | 152 |
| abstract_inverted_index.especially | 201 |
| abstract_inverted_index.prediction | 126 |
| abstract_inverted_index.smoothness | 50, 150 |
| abstract_inverted_index.supervised | 76, 196 |
| abstract_inverted_index.worst-case | 38, 104 |
| abstract_inverted_index.adversarial | 13, 136 |
| abstract_inverted_index.alternating | 165 |
| abstract_inverted_index.approximate | 55 |
| abstract_inverted_index.constructed | 140 |
| abstract_inverted_index.demonstrate | 182 |
| abstract_inverted_index.experiments | 176 |
| abstract_inverted_index.intentional | 26 |
| abstract_inverted_index.outperforms | 188 |
| abstract_inverted_index.improvement. | 44 |
| abstract_inverted_index.methodology, | 67 |
| abstract_inverted_index.optimization | 132 |
| abstract_inverted_index.perturbation | 98, 124 |
| abstract_inverted_index.cross-entropy | 144 |
| abstract_inverted_index.distribution, | 112 |
| abstract_inverted_index.perturbations | 27, 105 |
| abstract_inverted_index.significantly | 187 |
| abstract_inverted_index.generalization | 19 |
| abstract_inverted_index.perturbations, | 39 |
| abstract_inverted_index.semi-supervised | 78, 198, 212 |
| abstract_inverted_index.state-of-the-art | 190 |
| abstract_inverted_index.trajectory-preserving-based | 164 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100336868 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I354108, https://openalex.org/I37987034, https://openalex.org/I4210156404 |
| citation_normalized_percentile.value | 0.74544036 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |