Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy Networking Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.15928
Lyapunov optimization theory has recently emerged as a powerful mathematical framework for solving complex stochastic optimization problems by transforming long-term objectives into a sequence of real-time short-term decisions while ensuring system stability. This theory is particularly valuable in unmanned aerial vehicle (UAV)-based low-altitude economy (LAE) networking scenarios, where it could effectively address inherent challenges of dynamic network conditions, multiple optimization objectives, and stability requirements. Recently, generative artificial intelligence (GenAI) has garnered significant attention for its unprecedented capability to generate diverse digital content. Extending beyond content generation, in this paper, we propose a framework integrating generative diffusion models with reinforcement learning to address Lyapunov optimization problems in UAV-based LAE networking. We begin by introducing the fundamentals of Lyapunov optimization theory and analyzing the limitations of both conventional methods and traditional AI-enabled approaches. We then examine various GenAI models and comprehensively analyze their potential contributions to Lyapunov optimization. Subsequently, we develop a Lyapunov-guided generative diffusion model-based reinforcement learning framework and validate its effectiveness through a UAV-based LAE networking case study. Finally, we outline several directions for future research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.15928
- https://arxiv.org/pdf/2501.15928
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406884802
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406884802Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.15928Digital Object Identifier
- Title
-
Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy NetworkingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-27Full publication date if available
- Authors
-
Liu Zhang, Dusit Niyato, Jiacheng Wang, Geng Sun, Lianfen Huang, Zhibin Gao, Xianbin WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.15928Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.15928Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.15928Direct OA link when available
- Concepts
-
Lyapunov function, Generative grammar, Computer science, Artificial intelligence, Nonlinear system, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406884802 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.15928 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.15928 |
| ids.openalex | https://openalex.org/W4406884802 |
| fwci | 0.0 |
| type | preprint |
| title | Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy Networking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10249 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9908999800682068 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Distributed Control Multi-Agent Systems |
| topics[1].id | https://openalex.org/T11133 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9501000046730042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | UAV Applications and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60640748 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6430823802947998 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2337858 |
| concepts[0].display_name | Lyapunov function |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6186861395835876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4822748005390167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3215009868144989 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C158622935 |
| concepts[4].level | 2 |
| concepts[4].score | 0.17111191153526306 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[4].display_name | Nonlinear system |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.06570819020271301 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C62520636 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[6].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/lyapunov-function |
| keywords[0].score | 0.6430823802947998 |
| keywords[0].display_name | Lyapunov function |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.6186861395835876 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4822748005390167 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3215009868144989 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/nonlinear-system |
| keywords[4].score | 0.17111191153526306 |
| keywords[4].display_name | Nonlinear system |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.06570819020271301 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.15928 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.15928 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.15928 |
| locations[1].id | doi:10.48550/arxiv.2501.15928 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.15928 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100350349 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-8591-3612 |
| authorships[0].author.display_name | Liu Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091266202 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7442-7416 |
| authorships[1].author.display_name | Dusit Niyato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Niyato, Dusit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100727953 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4008-067X |
| authorships[2].author.display_name | Jiacheng Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Jiacheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085514719 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7802-4908 |
| authorships[3].author.display_name | Geng Sun |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sun, Geng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5019883648 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1620-1504 |
| authorships[4].author.display_name | Lianfen Huang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huang, Lianfen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5022967503 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1878-9065 |
| authorships[5].author.display_name | Zhibin Gao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gao, Zhibin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100733413 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4890-0748 |
| authorships[6].author.display_name | Xianbin Wang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wang, Xianbin |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.15928 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy Networking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10249 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9908999800682068 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Distributed Control Multi-Agent Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.15928 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.15928 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.15928 |
| primary_location.id | pmh:oai:arXiv.org:2501.15928 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.15928 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.15928 |
| publication_date | 2025-01-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 22, 91, 149, 162 |
| abstract_inverted_index.We | 109, 131 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.by | 17, 111 |
| abstract_inverted_index.in | 37, 86, 105 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.it | 48 |
| abstract_inverted_index.of | 24, 54, 115, 123 |
| abstract_inverted_index.to | 77, 100, 143 |
| abstract_inverted_index.we | 89, 147, 169 |
| abstract_inverted_index.LAE | 107, 164 |
| abstract_inverted_index.and | 61, 119, 127, 137, 157 |
| abstract_inverted_index.for | 11, 73, 173 |
| abstract_inverted_index.has | 3, 69 |
| abstract_inverted_index.its | 74, 159 |
| abstract_inverted_index.the | 113, 121 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.both | 124 |
| abstract_inverted_index.case | 166 |
| abstract_inverted_index.into | 21 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.(LAE) | 44 |
| abstract_inverted_index.GenAI | 135 |
| abstract_inverted_index.begin | 110 |
| abstract_inverted_index.could | 49 |
| abstract_inverted_index.their | 140 |
| abstract_inverted_index.where | 47 |
| abstract_inverted_index.while | 28 |
| abstract_inverted_index.aerial | 39 |
| abstract_inverted_index.beyond | 83 |
| abstract_inverted_index.future | 174 |
| abstract_inverted_index.models | 96, 136 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.study. | 167 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.theory | 2, 33, 118 |
| abstract_inverted_index.(GenAI) | 68 |
| abstract_inverted_index.address | 51, 101 |
| abstract_inverted_index.analyze | 139 |
| abstract_inverted_index.complex | 13 |
| abstract_inverted_index.content | 84 |
| abstract_inverted_index.develop | 148 |
| abstract_inverted_index.digital | 80 |
| abstract_inverted_index.diverse | 79 |
| abstract_inverted_index.dynamic | 55 |
| abstract_inverted_index.economy | 43 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.examine | 133 |
| abstract_inverted_index.methods | 126 |
| abstract_inverted_index.network | 56 |
| abstract_inverted_index.outline | 170 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.several | 171 |
| abstract_inverted_index.solving | 12 |
| abstract_inverted_index.through | 161 |
| abstract_inverted_index.various | 134 |
| abstract_inverted_index.vehicle | 40 |
| abstract_inverted_index.Finally, | 168 |
| abstract_inverted_index.Lyapunov | 0, 102, 116, 144 |
| abstract_inverted_index.content. | 81 |
| abstract_inverted_index.ensuring | 29 |
| abstract_inverted_index.garnered | 70 |
| abstract_inverted_index.generate | 78 |
| abstract_inverted_index.inherent | 52 |
| abstract_inverted_index.learning | 99, 155 |
| abstract_inverted_index.multiple | 58 |
| abstract_inverted_index.powerful | 8 |
| abstract_inverted_index.problems | 16, 104 |
| abstract_inverted_index.recently | 4 |
| abstract_inverted_index.sequence | 23 |
| abstract_inverted_index.unmanned | 38 |
| abstract_inverted_index.validate | 158 |
| abstract_inverted_index.valuable | 36 |
| abstract_inverted_index.Extending | 82 |
| abstract_inverted_index.Recently, | 64 |
| abstract_inverted_index.UAV-based | 106, 163 |
| abstract_inverted_index.analyzing | 120 |
| abstract_inverted_index.attention | 72 |
| abstract_inverted_index.decisions | 27 |
| abstract_inverted_index.diffusion | 95, 152 |
| abstract_inverted_index.framework | 10, 92, 156 |
| abstract_inverted_index.long-term | 19 |
| abstract_inverted_index.potential | 141 |
| abstract_inverted_index.real-time | 25 |
| abstract_inverted_index.research. | 175 |
| abstract_inverted_index.stability | 62 |
| abstract_inverted_index.AI-enabled | 129 |
| abstract_inverted_index.artificial | 66 |
| abstract_inverted_index.capability | 76 |
| abstract_inverted_index.challenges | 53 |
| abstract_inverted_index.directions | 172 |
| abstract_inverted_index.generative | 65, 94, 151 |
| abstract_inverted_index.networking | 45, 165 |
| abstract_inverted_index.objectives | 20 |
| abstract_inverted_index.scenarios, | 46 |
| abstract_inverted_index.short-term | 26 |
| abstract_inverted_index.stability. | 31 |
| abstract_inverted_index.stochastic | 14 |
| abstract_inverted_index.(UAV)-based | 41 |
| abstract_inverted_index.approaches. | 130 |
| abstract_inverted_index.conditions, | 57 |
| abstract_inverted_index.effectively | 50 |
| abstract_inverted_index.generation, | 85 |
| abstract_inverted_index.integrating | 93 |
| abstract_inverted_index.introducing | 112 |
| abstract_inverted_index.limitations | 122 |
| abstract_inverted_index.model-based | 153 |
| abstract_inverted_index.networking. | 108 |
| abstract_inverted_index.objectives, | 60 |
| abstract_inverted_index.significant | 71 |
| abstract_inverted_index.traditional | 128 |
| abstract_inverted_index.conventional | 125 |
| abstract_inverted_index.fundamentals | 114 |
| abstract_inverted_index.intelligence | 67 |
| abstract_inverted_index.low-altitude | 42 |
| abstract_inverted_index.mathematical | 9 |
| abstract_inverted_index.optimization | 1, 15, 59, 103, 117 |
| abstract_inverted_index.particularly | 35 |
| abstract_inverted_index.transforming | 18 |
| abstract_inverted_index.Subsequently, | 146 |
| abstract_inverted_index.contributions | 142 |
| abstract_inverted_index.effectiveness | 160 |
| abstract_inverted_index.optimization. | 145 |
| abstract_inverted_index.reinforcement | 98, 154 |
| abstract_inverted_index.requirements. | 63 |
| abstract_inverted_index.unprecedented | 75 |
| abstract_inverted_index.Lyapunov-guided | 150 |
| abstract_inverted_index.comprehensively | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |