Generative AI for Physical-Layer Authentication Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.18175
In recent years, Artificial Intelligence (AI)-driven Physical-Layer Authentication (PLA), which focuses on achieving endogenous security and intelligent identity authentication, has attracted considerable interest. When compared with Discriminative AI (DAI), Generative AI (GAI) offers several advantages, such as fingerprint data augmentation, fingerprint denoising and reconstruction, and protection against adversarial attacks. Inspired by these innovations, this paper provides a systematic exploration of GAI's integration into PLA frameworks. We commence with a review of representative authentication techniques, emphasizing PLA's inherent strengths. Following this, we revisit four typical GAI models and contrast the limitations of DAI with the potential of GAI in addressing PLA challenges, including insufficient fingerprint data, environment noises and inferences, perturbations in fingerprint data, and complex tasks. Specifically, we delve into providing GAI-enhanced methods for PLA across the fingerprint collection, model training, and performance optimization phases in detail. Moreover, we present a case study that combines fingerprint extrapolation and Generative Diffusion Model (GDM) to illustrate the superiority of GAI in bolstering the reliability of PLA. Additionally, we outline potential future research directions for GAI-based PLA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.18175
- https://arxiv.org/pdf/2504.18175
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416380202
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416380202Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.18175Digital Object Identifier
- Title
-
Generative AI for Physical-Layer AuthenticationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-25Full publication date if available
- Authors
-
Xiqi Cheng, Song Gao, Xiaodong Xu, Guoshun Nan, Xiaofeng Tao, Ping ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.18175Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.18175Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.18175Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416380202 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.18175 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.18175 |
| ids.openalex | https://openalex.org/W4416380202 |
| fwci | |
| type | preprint |
| title | Generative AI for Physical-Layer Authentication |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.18175 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.18175 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.18175 |
| locations[1].id | doi:10.48550/arxiv.2504.18175 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.18175 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103705934 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-7983-4211 |
| authorships[0].author.display_name | Xiqi Cheng |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Cheng, Xiqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017036839 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3427-0167 |
| authorships[1].author.display_name | Song Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Song |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004224533 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0348-2095 |
| authorships[2].author.display_name | Xiaodong Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Xiaodong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020360628 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1987-2736 |
| authorships[3].author.display_name | Guoshun Nan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nan, Guoshun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114206912 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xiaofeng Tao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tao, Xiaofeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100405787 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0269-104X |
| authorships[5].author.display_name | Ping Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Ping |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.18175 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative AI for Physical-Layer Authentication |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:36:09.117569 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.18175 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.18175 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.18175 |
| primary_location.id | pmh:oai:arXiv.org:2504.18175 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.18175 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.18175 |
| publication_date | 2025-04-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56, 68, 140 |
| abstract_inverted_index.AI | 27, 30 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 65 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.in | 97, 110, 135, 158 |
| abstract_inverted_index.of | 59, 70, 90, 95, 156, 162 |
| abstract_inverted_index.on | 11 |
| abstract_inverted_index.to | 152 |
| abstract_inverted_index.we | 80, 117, 138, 165 |
| abstract_inverted_index.DAI | 91 |
| abstract_inverted_index.GAI | 84, 96, 157 |
| abstract_inverted_index.PLA | 63, 99, 124 |
| abstract_inverted_index.and | 15, 42, 44, 86, 107, 113, 131, 147 |
| abstract_inverted_index.for | 123, 171 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.the | 88, 93, 126, 154, 160 |
| abstract_inverted_index.PLA. | 163, 173 |
| abstract_inverted_index.When | 23 |
| abstract_inverted_index.case | 141 |
| abstract_inverted_index.data | 38 |
| abstract_inverted_index.four | 82 |
| abstract_inverted_index.into | 62, 119 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.that | 143 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.with | 25, 67, 92 |
| abstract_inverted_index.(GAI) | 31 |
| abstract_inverted_index.(GDM) | 151 |
| abstract_inverted_index.GAI's | 60 |
| abstract_inverted_index.Model | 150 |
| abstract_inverted_index.PLA's | 75 |
| abstract_inverted_index.data, | 104, 112 |
| abstract_inverted_index.delve | 118 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.paper | 54 |
| abstract_inverted_index.study | 142 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.this, | 79 |
| abstract_inverted_index.which | 9 |
| abstract_inverted_index.(DAI), | 28 |
| abstract_inverted_index.(PLA), | 8 |
| abstract_inverted_index.across | 125 |
| abstract_inverted_index.future | 168 |
| abstract_inverted_index.models | 85 |
| abstract_inverted_index.noises | 106 |
| abstract_inverted_index.offers | 32 |
| abstract_inverted_index.phases | 134 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.review | 69 |
| abstract_inverted_index.tasks. | 115 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.against | 46 |
| abstract_inverted_index.complex | 114 |
| abstract_inverted_index.detail. | 136 |
| abstract_inverted_index.focuses | 10 |
| abstract_inverted_index.methods | 122 |
| abstract_inverted_index.outline | 166 |
| abstract_inverted_index.present | 139 |
| abstract_inverted_index.revisit | 81 |
| abstract_inverted_index.several | 33 |
| abstract_inverted_index.typical | 83 |
| abstract_inverted_index.Inspired | 49 |
| abstract_inverted_index.attacks. | 48 |
| abstract_inverted_index.combines | 144 |
| abstract_inverted_index.commence | 66 |
| abstract_inverted_index.compared | 24 |
| abstract_inverted_index.contrast | 87 |
| abstract_inverted_index.identity | 17 |
| abstract_inverted_index.inherent | 76 |
| abstract_inverted_index.provides | 55 |
| abstract_inverted_index.research | 169 |
| abstract_inverted_index.security | 14 |
| abstract_inverted_index.Diffusion | 149 |
| abstract_inverted_index.Following | 78 |
| abstract_inverted_index.GAI-based | 172 |
| abstract_inverted_index.Moreover, | 137 |
| abstract_inverted_index.achieving | 12 |
| abstract_inverted_index.attracted | 20 |
| abstract_inverted_index.denoising | 41 |
| abstract_inverted_index.including | 101 |
| abstract_inverted_index.interest. | 22 |
| abstract_inverted_index.potential | 94, 167 |
| abstract_inverted_index.providing | 120 |
| abstract_inverted_index.training, | 130 |
| abstract_inverted_index.Artificial | 3 |
| abstract_inverted_index.Generative | 29, 148 |
| abstract_inverted_index.addressing | 98 |
| abstract_inverted_index.bolstering | 159 |
| abstract_inverted_index.directions | 170 |
| abstract_inverted_index.endogenous | 13 |
| abstract_inverted_index.illustrate | 153 |
| abstract_inverted_index.protection | 45 |
| abstract_inverted_index.strengths. | 77 |
| abstract_inverted_index.systematic | 57 |
| abstract_inverted_index.(AI)-driven | 5 |
| abstract_inverted_index.advantages, | 34 |
| abstract_inverted_index.adversarial | 47 |
| abstract_inverted_index.challenges, | 100 |
| abstract_inverted_index.collection, | 128 |
| abstract_inverted_index.emphasizing | 74 |
| abstract_inverted_index.environment | 105 |
| abstract_inverted_index.exploration | 58 |
| abstract_inverted_index.fingerprint | 37, 40, 103, 111, 127, 145 |
| abstract_inverted_index.frameworks. | 64 |
| abstract_inverted_index.inferences, | 108 |
| abstract_inverted_index.integration | 61 |
| abstract_inverted_index.intelligent | 16 |
| abstract_inverted_index.limitations | 89 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.reliability | 161 |
| abstract_inverted_index.superiority | 155 |
| abstract_inverted_index.techniques, | 73 |
| abstract_inverted_index.GAI-enhanced | 121 |
| abstract_inverted_index.Intelligence | 4 |
| abstract_inverted_index.considerable | 21 |
| abstract_inverted_index.innovations, | 52 |
| abstract_inverted_index.insufficient | 102 |
| abstract_inverted_index.optimization | 133 |
| abstract_inverted_index.Additionally, | 164 |
| abstract_inverted_index.Specifically, | 116 |
| abstract_inverted_index.augmentation, | 39 |
| abstract_inverted_index.extrapolation | 146 |
| abstract_inverted_index.perturbations | 109 |
| abstract_inverted_index.Authentication | 7 |
| abstract_inverted_index.Discriminative | 26 |
| abstract_inverted_index.Physical-Layer | 6 |
| abstract_inverted_index.authentication | 72 |
| abstract_inverted_index.representative | 71 |
| abstract_inverted_index.authentication, | 18 |
| abstract_inverted_index.reconstruction, | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |