Generative Artificial Intelligence (GenAI) in the research process – a survey of researchers’ practices and perceptions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.31235/osf.io/83whe
This study explores the use of generative AI (GenAI) and research integrity assessments of use cases by researchers, including PhD students, at Danish universities. Conducted through a survey sent to all Danish researchers from January to February 2024, the study received 2,534 responses and evaluated 32 GenAI use cases across five research phases: idea generation, research design, data collection, data analysis, and writing/reporting. Respondents reported on their own and colleagues' GenAI usage. They also assessed whether the practices in the use cases were considered good research practice. Through an explorative factor analysis, we identified three clusters of perception: "GenAI as a work horse," "GenAI as a language assistant only", and "GenAI as a research accelerator". The findings further show varied opinions on GenAI's research integrity implications. Language editing and data analysis were generally viewed positively, whereas experiment design and peer review tasks faced more criticism. Controversial areas included image creation/modification and synthetic data, with comments highlighting the need for critical and reflexive use of GenAI. Usage differed by main research area, with technical and quantitative sciences reporting slightly higher usage and more positive assessments. Junior researchers used GenAI more than senior colleagues, while no significant gender differences were observed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31235/osf.io/83whe
- OA Status
- gold
- Cited By
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402438570
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402438570Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31235/osf.io/83wheDigital Object Identifier
- Title
-
Generative Artificial Intelligence (GenAI) in the research process – a survey of researchers’ practices and perceptionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-11Full publication date if available
- Authors
-
Jens Peter Andersen, Lise Degn, Rachel Fishberg, Ebbe Krogh Graversen, Serge P. J. M. Horbach, Evanthia Kalpazidou Schmidt, Jesper Wiborg Schneider, Mads P. SørensenList of authors in order
- Landing page
-
https://doi.org/10.31235/osf.io/83whePublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.31235/osf.io/83wheDirect OA link when available
- Concepts
-
Perception, Generative grammar, Process (computing), Survey research, Psychology, Artificial intelligence, Data science, Computer science, Applied psychology, Operating system, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402438570 |
|---|---|
| doi | https://doi.org/10.31235/osf.io/83whe |
| ids.doi | https://doi.org/10.31235/osf.io/83whe |
| ids.openalex | https://openalex.org/W4402438570 |
| fwci | 11.364548 |
| type | preprint |
| title | Generative Artificial Intelligence (GenAI) in the research process – a survey of researchers’ practices and perceptions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.38530001044273376 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T13812 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.3450999855995178 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1407 |
| topics[1].subfield.display_name | Organizational Behavior and Human Resource Management |
| topics[1].display_name | AI and HR Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C26760741 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6680970191955566 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[0].display_name | Perception |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6321111917495728 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5071675777435303 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C173481278 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46945422887802124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7257997 |
| concepts[3].display_name | Survey research |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4246668815612793 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4027675986289978 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3921390473842621 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3851458728313446 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C75630572 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17391321063041687 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q538904 |
| concepts[8].display_name | Applied psychology |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/perception |
| keywords[0].score | 0.6680970191955566 |
| keywords[0].display_name | Perception |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.6321111917495728 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5071675777435303 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/survey-research |
| keywords[3].score | 0.46945422887802124 |
| keywords[3].display_name | Survey research |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.4246668815612793 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4027675986289978 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.3921390473842621 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3851458728313446 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/applied-psychology |
| keywords[8].score | 0.17391321063041687 |
| keywords[8].display_name | Applied psychology |
| language | en |
| locations[0].id | doi:10.31235/osf.io/83whe |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31235/osf.io/83whe |
| locations[1].id | pmh:oai:pure.atira.dk:publications/0a2d4be7-0e9d-4fbd-b150-43f55cdc36d2 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | workingPaper |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Andersen, J P, Degn, L, Fishberg, R, Graversen, E K, Horbach, S P J M, Kalpazidou Schmidt, E, Schneider, J W & Sørensen, M P 2024 'Generative Artificial Intelligence (GenAI) in the research process – a survey of researchers’ practices and perceptions'. https://doi.org/10.31235/osf.io/83whe |
| locations[1].landing_page_url | https://pure.au.dk/portal/en/publications/0a2d4be7-0e9d-4fbd-b150-43f55cdc36d2 |
| locations[2].id | pmh:oai:share.osf.io:f33bd40c-00a8-4b05-bcdc-fa385879ec45 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400047 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Arabixiv (OSF Preprints) |
| locations[2].source.host_organization | https://openalex.org/I2799848540 |
| locations[2].source.host_organization_name | Center for Open Science |
| locations[2].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Preprint |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://osf.io/83whe |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101689796 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2444-6210 |
| authorships[0].author.display_name | Jens Peter Andersen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jens Peter Andersen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014931471 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3779-4241 |
| authorships[1].author.display_name | Lise Degn |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lise Degn |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002962126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4386-2933 |
| authorships[2].author.display_name | Rachel Fishberg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rachel Fishberg |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065612204 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4009-2678 |
| authorships[3].author.display_name | Ebbe Krogh Graversen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ebbe Krogh Graversen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012787982 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0406-6261 |
| authorships[4].author.display_name | Serge P. J. M. Horbach |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Serge P. J. M. Horbach |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010776710 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3204-0803 |
| authorships[5].author.display_name | Evanthia Kalpazidou Schmidt |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Evanthia K. Schmidt |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5087711642 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5556-0919 |
| authorships[6].author.display_name | Jesper Wiborg Schneider |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jesper W. Schneider |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5103198867 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2455-2515 |
| authorships[7].author.display_name | Mads P. Sørensen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Mads P. Sørensen |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.31235/osf.io/83whe |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-12T00:00:00 |
| display_name | Generative Artificial Intelligence (GenAI) in the research process – a survey of researchers’ practices and perceptions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.38530001044273376 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W4390718435, https://openalex.org/W4390549206, https://openalex.org/W3137171911, https://openalex.org/W4379540039, https://openalex.org/W4237784285, https://openalex.org/W2374712251, https://openalex.org/W4383031710, https://openalex.org/W3211753092, https://openalex.org/W2386000789 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.31235/osf.io/83whe |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31235/osf.io/83whe |
| primary_location.id | doi:10.31235/osf.io/83whe |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31235/osf.io/83whe |
| publication_date | 2024-09-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 26, 100, 105, 112 |
| abstract_inverted_index.32 | 45 |
| abstract_inverted_index.AI | 7 |
| abstract_inverted_index.an | 88 |
| abstract_inverted_index.as | 99, 104, 111 |
| abstract_inverted_index.at | 21 |
| abstract_inverted_index.by | 16, 167 |
| abstract_inverted_index.in | 78 |
| abstract_inverted_index.no | 193 |
| abstract_inverted_index.of | 5, 13, 96, 163 |
| abstract_inverted_index.on | 65, 121 |
| abstract_inverted_index.to | 29, 35 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.PhD | 19 |
| abstract_inverted_index.The | 115 |
| abstract_inverted_index.all | 30 |
| abstract_inverted_index.and | 9, 43, 61, 68, 109, 128, 138, 150, 160, 173, 180 |
| abstract_inverted_index.for | 158 |
| abstract_inverted_index.own | 67 |
| abstract_inverted_index.the | 3, 38, 76, 79, 156 |
| abstract_inverted_index.use | 4, 14, 47, 80, 162 |
| abstract_inverted_index.They | 72 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 73 |
| abstract_inverted_index.data | 57, 59, 129 |
| abstract_inverted_index.five | 50 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.good | 84 |
| abstract_inverted_index.idea | 53 |
| abstract_inverted_index.main | 168 |
| abstract_inverted_index.more | 143, 181, 188 |
| abstract_inverted_index.need | 157 |
| abstract_inverted_index.peer | 139 |
| abstract_inverted_index.sent | 28 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.than | 189 |
| abstract_inverted_index.used | 186 |
| abstract_inverted_index.were | 82, 131, 197 |
| abstract_inverted_index.with | 153, 171 |
| abstract_inverted_index.work | 101 |
| abstract_inverted_index.2,534 | 41 |
| abstract_inverted_index.2024, | 37 |
| abstract_inverted_index.GenAI | 46, 70, 187 |
| abstract_inverted_index.Usage | 165 |
| abstract_inverted_index.area, | 170 |
| abstract_inverted_index.areas | 146 |
| abstract_inverted_index.cases | 15, 48, 81 |
| abstract_inverted_index.data, | 152 |
| abstract_inverted_index.faced | 142 |
| abstract_inverted_index.image | 148 |
| abstract_inverted_index.study | 1, 39 |
| abstract_inverted_index.tasks | 141 |
| abstract_inverted_index.their | 66 |
| abstract_inverted_index.three | 94 |
| abstract_inverted_index.usage | 179 |
| abstract_inverted_index.while | 192 |
| abstract_inverted_index."GenAI | 98, 103, 110 |
| abstract_inverted_index.Danish | 22, 31 |
| abstract_inverted_index.GenAI. | 164 |
| abstract_inverted_index.Junior | 184 |
| abstract_inverted_index.across | 49 |
| abstract_inverted_index.design | 137 |
| abstract_inverted_index.factor | 90 |
| abstract_inverted_index.gender | 195 |
| abstract_inverted_index.higher | 178 |
| abstract_inverted_index.only", | 108 |
| abstract_inverted_index.review | 140 |
| abstract_inverted_index.senior | 190 |
| abstract_inverted_index.survey | 27 |
| abstract_inverted_index.usage. | 71 |
| abstract_inverted_index.varied | 119 |
| abstract_inverted_index.viewed | 133 |
| abstract_inverted_index.(GenAI) | 8 |
| abstract_inverted_index.GenAI's | 122 |
| abstract_inverted_index.January | 34 |
| abstract_inverted_index.Through | 87 |
| abstract_inverted_index.design, | 56 |
| abstract_inverted_index.editing | 127 |
| abstract_inverted_index.further | 117 |
| abstract_inverted_index.horse," | 102 |
| abstract_inverted_index.phases: | 52 |
| abstract_inverted_index.through | 25 |
| abstract_inverted_index.whereas | 135 |
| abstract_inverted_index.whether | 75 |
| abstract_inverted_index.February | 36 |
| abstract_inverted_index.Language | 126 |
| abstract_inverted_index.analysis | 130 |
| abstract_inverted_index.assessed | 74 |
| abstract_inverted_index.clusters | 95 |
| abstract_inverted_index.comments | 154 |
| abstract_inverted_index.critical | 159 |
| abstract_inverted_index.differed | 166 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.findings | 116 |
| abstract_inverted_index.included | 147 |
| abstract_inverted_index.language | 106 |
| abstract_inverted_index.opinions | 120 |
| abstract_inverted_index.positive | 182 |
| abstract_inverted_index.received | 40 |
| abstract_inverted_index.reported | 64 |
| abstract_inverted_index.research | 10, 51, 55, 85, 113, 123, 169 |
| abstract_inverted_index.sciences | 175 |
| abstract_inverted_index.slightly | 177 |
| abstract_inverted_index.Conducted | 24 |
| abstract_inverted_index.analysis, | 60, 91 |
| abstract_inverted_index.assistant | 107 |
| abstract_inverted_index.evaluated | 44 |
| abstract_inverted_index.generally | 132 |
| abstract_inverted_index.including | 18 |
| abstract_inverted_index.integrity | 11, 124 |
| abstract_inverted_index.observed. | 198 |
| abstract_inverted_index.practice. | 86 |
| abstract_inverted_index.practices | 77 |
| abstract_inverted_index.reflexive | 161 |
| abstract_inverted_index.reporting | 176 |
| abstract_inverted_index.responses | 42 |
| abstract_inverted_index.students, | 20 |
| abstract_inverted_index.synthetic | 151 |
| abstract_inverted_index.technical | 172 |
| abstract_inverted_index.considered | 83 |
| abstract_inverted_index.criticism. | 144 |
| abstract_inverted_index.experiment | 136 |
| abstract_inverted_index.generative | 6 |
| abstract_inverted_index.identified | 93 |
| abstract_inverted_index.Respondents | 63 |
| abstract_inverted_index.assessments | 12 |
| abstract_inverted_index.colleagues' | 69 |
| abstract_inverted_index.colleagues, | 191 |
| abstract_inverted_index.collection, | 58 |
| abstract_inverted_index.differences | 196 |
| abstract_inverted_index.explorative | 89 |
| abstract_inverted_index.generation, | 54 |
| abstract_inverted_index.perception: | 97 |
| abstract_inverted_index.positively, | 134 |
| abstract_inverted_index.researchers | 32, 185 |
| abstract_inverted_index.significant | 194 |
| abstract_inverted_index.assessments. | 183 |
| abstract_inverted_index.highlighting | 155 |
| abstract_inverted_index.quantitative | 174 |
| abstract_inverted_index.researchers, | 17 |
| abstract_inverted_index.Controversial | 145 |
| abstract_inverted_index.accelerator". | 114 |
| abstract_inverted_index.implications. | 125 |
| abstract_inverted_index.universities. | 23 |
| abstract_inverted_index.writing/reporting. | 62 |
| abstract_inverted_index.creation/modification | 149 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.9768 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |