Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.06045
An ensemble post-processing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to post-process convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1--24 hr forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier Skill Score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the inter-variable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to post-process CAM output using neural networks that can be applied to severe weather prediction.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.06045
- https://arxiv.org/pdf/2310.06045
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387560669
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387560669Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.06045Digital Object Identifier
- Title
-
Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing modelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-09Full publication date if available
- Authors
-
Yingkai Sha, Ryan A. Sobash, David John GagneList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.06045Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.06045Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.06045Direct OA link when available
- Concepts
-
Artificial intelligence, Ensemble forecasting, Computer science, Probabilistic forecasting, Convolutional neural network, Probabilistic logic, Artificial neural network, Deep learning, Machine learning, Numerical weather prediction, Generative grammar, Meteorology, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387560669 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.06045 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.06045 |
| ids.openalex | https://openalex.org/W4387560669 |
| fwci | |
| type | preprint |
| title | Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T11483 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.972100019454956 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Tropical and Extratropical Cyclones Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6218237280845642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C119898033 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6162869930267334 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[1].display_name | Ensemble forecasting |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6057206988334656 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C122282355 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5712831616401672 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7246855 |
| concepts[3].display_name | Probabilistic forecasting |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5620598196983337 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C49937458 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5516213774681091 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[5].display_name | Probabilistic logic |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5366978049278259 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5267419219017029 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5203385353088379 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C147947694 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46410998702049255 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837552 |
| concepts[9].display_name | Numerical weather prediction |
| concepts[10].id | https://openalex.org/C39890363 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4131550192832947 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[10].display_name | Generative grammar |
| concepts[11].id | https://openalex.org/C153294291 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3043983578681946 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[11].display_name | Meteorology |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09246030449867249 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6218237280845642 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[1].score | 0.6162869930267334 |
| keywords[1].display_name | Ensemble forecasting |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6057206988334656 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/probabilistic-forecasting |
| keywords[3].score | 0.5712831616401672 |
| keywords[3].display_name | Probabilistic forecasting |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5620598196983337 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[5].score | 0.5516213774681091 |
| keywords[5].display_name | Probabilistic logic |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5366978049278259 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5267419219017029 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.5203385353088379 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/numerical-weather-prediction |
| keywords[9].score | 0.46410998702049255 |
| keywords[9].display_name | Numerical weather prediction |
| keywords[10].id | https://openalex.org/keywords/generative-grammar |
| keywords[10].score | 0.4131550192832947 |
| keywords[10].display_name | Generative grammar |
| keywords[11].id | https://openalex.org/keywords/meteorology |
| keywords[11].score | 0.3043983578681946 |
| keywords[11].display_name | Meteorology |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.09246030449867249 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.06045 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.06045 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.06045 |
| locations[1].id | doi:10.48550/arxiv.2310.06045 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.06045 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109543680 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-4702-8655 |
| authorships[0].author.display_name | Yingkai Sha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sha, Yingkai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083160107 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ryan A. Sobash |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sobash, Ryan A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013616568 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0469-2740 |
| authorships[2].author.display_name | David John Gagne |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gagne II, David John |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.06045 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W2607339923, https://openalex.org/W2990134330, https://openalex.org/W3125211436, https://openalex.org/W4387005524, https://openalex.org/W3024663870, https://openalex.org/W4251651833, https://openalex.org/W4293349030, https://openalex.org/W2769304616, https://openalex.org/W2070671604, https://openalex.org/W4309030289 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.06045 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.06045 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.06045 |
| primary_location.id | pmh:oai:arXiv.org:2310.06045 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.06045 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.06045 |
| publication_date | 2023-10-09 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32, 39, 123, 170, 193 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.as | 90, 100, 184 |
| abstract_inverted_index.be | 205 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.hr | 88 |
| abstract_inverted_index.in | 129, 185 |
| abstract_inverted_index.is | 4, 80, 139, 158 |
| abstract_inverted_index.of | 10, 34, 75, 126, 134, 155, 181 |
| abstract_inverted_index.to | 44, 54, 71, 109, 117, 169, 196, 207 |
| abstract_inverted_index.up | 108 |
| abstract_inverted_index.20% | 110 |
| abstract_inverted_index.CAM | 61, 198 |
| abstract_inverted_index.CNN | 70 |
| abstract_inverted_index.For | 131 |
| abstract_inverted_index.The | 24, 50, 78, 102, 153 |
| abstract_inverted_index.and | 15, 63, 92, 150, 178 |
| abstract_inverted_index.are | 52, 66 |
| abstract_inverted_index.bad | 151 |
| abstract_inverted_index.but | 141 |
| abstract_inverted_index.can | 147, 204 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.the | 7, 19, 69, 73, 132, 137, 164, 175, 179, 186 |
| abstract_inverted_index.CGAN | 156, 165 |
| abstract_inverted_index.HRRR | 127, 188 |
| abstract_inverted_index.This | 190 |
| abstract_inverted_index.also | 159 |
| abstract_inverted_index.deep | 35 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.good | 149 |
| abstract_inverted_index.over | 18 |
| abstract_inverted_index.show | 162 |
| abstract_inverted_index.that | 146, 163, 203 |
| abstract_inverted_index.they | 173 |
| abstract_inverted_index.type | 33 |
| abstract_inverted_index.wind | 16 |
| abstract_inverted_index.with | 38, 107 |
| abstract_inverted_index.work | 191 |
| abstract_inverted_index.(BSS) | 114 |
| abstract_inverted_index.(CAM) | 48 |
| abstract_inverted_index.(CNN) | 43 |
| abstract_inverted_index.(SPC) | 96 |
| abstract_inverted_index.1--24 | 87 |
| abstract_inverted_index.2021. | 130 |
| abstract_inverted_index.Brier | 111 |
| abstract_inverted_index.CGANs | 51 |
| abstract_inverted_index.Rapid | 84 |
| abstract_inverted_index.Score | 113 |
| abstract_inverted_index.Skill | 112 |
| abstract_inverted_index.Storm | 93 |
| abstract_inverted_index.hail, | 14 |
| abstract_inverted_index.model | 47 |
| abstract_inverted_index.novel | 194 |
| abstract_inverted_index.other | 118 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.using | 82, 122, 200 |
| abstract_inverted_index.(HRRR) | 86 |
| abstract_inverted_index.Center | 95 |
| abstract_inverted_index.States | 22 |
| abstract_inverted_index.United | 21 |
| abstract_inverted_index.behave | 167 |
| abstract_inverted_index.create | 55 |
| abstract_inverted_index.gusts) | 17 |
| abstract_inverted_index.inputs | 91 |
| abstract_inverted_index.method | 3, 25, 79, 103, 138 |
| abstract_inverted_index.model, | 37 |
| abstract_inverted_index.neural | 41, 201 |
| abstract_inverted_index.output | 199 |
| abstract_inverted_index.severe | 11, 76, 97, 208 |
| abstract_inverted_index.tested | 81 |
| abstract_inverted_index.Refresh | 85 |
| abstract_inverted_index.Results | 161 |
| abstract_inverted_index.applied | 206 |
| abstract_inverted_index.dataset | 125 |
| abstract_inverted_index.members | 58 |
| abstract_inverted_index.methods | 121 |
| abstract_inverted_index.network | 42 |
| abstract_inverted_index.outputs | 65, 157, 166 |
| abstract_inverted_index.quality | 154 |
| abstract_inverted_index.reports | 99 |
| abstract_inverted_index.spreads | 145 |
| abstract_inverted_index.testing | 124 |
| abstract_inverted_index.weather | 12, 98, 209 |
| abstract_inverted_index.(CGANs), | 31 |
| abstract_inverted_index.(CONUS). | 23 |
| abstract_inverted_index.approach | 195 |
| abstract_inverted_index.combines | 26 |
| abstract_inverted_index.compared | 116 |
| abstract_inverted_index.designed | 53 |
| abstract_inverted_index.ensemble | 1, 57, 144 |
| abstract_inverted_index.estimate | 72 |
| abstract_inverted_index.networks | 30, 202 |
| abstract_inverted_index.original | 187 |
| abstract_inverted_index.produced | 104 |
| abstract_inverted_index.produces | 142 |
| abstract_inverted_index.provides | 192 |
| abstract_inverted_index.skillful | 105 |
| abstract_inverted_index.targets. | 101 |
| abstract_inverted_index.weather. | 77 |
| abstract_inverted_index.developed | 5 |
| abstract_inverted_index.ensemble; | 172 |
| abstract_inverted_index.forecasts | 89, 128 |
| abstract_inverted_index.increases | 115 |
| abstract_inverted_index.numerical | 171 |
| abstract_inverted_index.preserved | 174 |
| abstract_inverted_index.processed | 67 |
| abstract_inverted_index.reference | 120 |
| abstract_inverted_index.similarly | 168 |
| abstract_inverted_index.synthetic | 56 |
| abstract_inverted_index.Prediction | 94 |
| abstract_inverted_index.evaluated. | 160 |
| abstract_inverted_index.evaluation | 133 |
| abstract_inverted_index.forecasts, | 62 |
| abstract_inverted_index.forecasts. | 49, 152, 189 |
| abstract_inverted_index.generative | 28, 36 |
| abstract_inverted_index.meaningful | 143 |
| abstract_inverted_index.prediction | 9 |
| abstract_inverted_index.predictors | 183 |
| abstract_inverted_index.(tornadoes, | 13 |
| abstract_inverted_index.adversarial | 29 |
| abstract_inverted_index.conditional | 27 |
| abstract_inverted_index.distinguish | 148 |
| abstract_inverted_index.influential | 182 |
| abstract_inverted_index.prediction. | 210 |
| abstract_inverted_index.predictions | 106 |
| abstract_inverted_index.probability | 74 |
| abstract_inverted_index.uncertainty | 135 |
| abstract_inverted_index.conterminous | 20 |
| abstract_inverted_index.contribution | 180 |
| abstract_inverted_index.correlations | 177 |
| abstract_inverted_index.post-process | 45, 197 |
| abstract_inverted_index.convolutional | 40 |
| abstract_inverted_index.deterministic | 60 |
| abstract_inverted_index.overconfident | 140 |
| abstract_inverted_index.probabilistic | 8 |
| abstract_inverted_index.inter-variable | 176 |
| abstract_inverted_index.High-Resolution | 83 |
| abstract_inverted_index.post-processing | 2 |
| abstract_inverted_index.quantification, | 136 |
| abstract_inverted_index.convection-allowing | 46 |
| abstract_inverted_index.neural-network-based | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |