Generative Flows on Synthetic Pathway for Drug Design Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.04542
Generative models in drug discovery have recently gained attention as efficient alternatives to brute-force virtual screening. However, most existing models do not account for synthesizability, limiting their practical use in real-world scenarios. In this paper, we propose RxnFlow, which sequentially assembles molecules using predefined molecular building blocks and chemical reaction templates to constrain the synthetic chemical pathway. We then train on this sequential generating process with the objective of generative flow networks (GFlowNets) to generate both highly rewarded and diverse molecules. To mitigate the large action space of synthetic pathways in GFlowNets, we implement a novel action space subsampling method. This enables RxnFlow to learn generative flows over extensive action spaces comprising combinations of 1.2 million building blocks and 71 reaction templates without significant computational overhead. Additionally, RxnFlow can employ modified or expanded action spaces for generation without retraining, allowing for the introduction of additional objectives or the incorporation of newly discovered building blocks. We experimentally demonstrate that RxnFlow outperforms existing reaction-based and fragment-based models in pocket-specific optimization across various target pockets. Furthermore, RxnFlow achieves state-of-the-art performance on CrossDocked2020 for pocket-conditional generation, with an average Vina score of -8.85 kcal/mol and 34.8% synthesizability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.04542
- https://arxiv.org/pdf/2410.04542
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403322799
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403322799Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.04542Digital Object Identifier
- Title
-
Generative Flows on Synthetic Pathway for Drug DesignWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-06Full publication date if available
- Authors
-
Seonghwan Seo, Minsu Kim, Tony S. Shen, Martin Ester, Jinkyoo Park, Sung Soo Ahn, Woo Youn KimList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.04542Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.04542Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.04542Direct OA link when available
- Concepts
-
Generative grammar, Drug, Computer science, Generative Design, Artificial intelligence, Business, Biology, Pharmacology, Marketing, Metric (unit)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403322799 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.04542 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.04542 |
| ids.openalex | https://openalex.org/W4403322799 |
| fwci | |
| type | preprint |
| title | Generative Flows on Synthetic Pathway for Drug Design |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11407 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9825999736785889 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Innovative Microfluidic and Catalytic Techniques Innovation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6492307782173157 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C2780035454 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47048643231391907 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[1].display_name | Drug |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43175172805786133 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C184408114 |
| concepts[3].level | 3 |
| concepts[3].score | 0.422042578458786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1502022 |
| concepts[3].display_name | Generative Design |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33116304874420166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C144133560 |
| concepts[5].level | 0 |
| concepts[5].score | 0.22143319249153137 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[5].display_name | Business |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1969747245311737 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C98274493 |
| concepts[7].level | 1 |
| concepts[7].score | 0.14952117204666138 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[7].display_name | Pharmacology |
| concepts[8].id | https://openalex.org/C162853370 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06714743375778198 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[8].display_name | Marketing |
| concepts[9].id | https://openalex.org/C176217482 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[9].display_name | Metric (unit) |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.6492307782173157 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/drug |
| keywords[1].score | 0.47048643231391907 |
| keywords[1].display_name | Drug |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43175172805786133 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/generative-design |
| keywords[3].score | 0.422042578458786 |
| keywords[3].display_name | Generative Design |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.33116304874420166 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/business |
| keywords[5].score | 0.22143319249153137 |
| keywords[5].display_name | Business |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.1969747245311737 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/pharmacology |
| keywords[7].score | 0.14952117204666138 |
| keywords[7].display_name | Pharmacology |
| keywords[8].id | https://openalex.org/keywords/marketing |
| keywords[8].score | 0.06714743375778198 |
| keywords[8].display_name | Marketing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.04542 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.04542 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.04542 |
| locations[1].id | doi:10.48550/arxiv.2410.04542 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.04542 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078801521 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4090-7825 |
| authorships[0].author.display_name | Seonghwan Seo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seo, Seonghwan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029810193 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-3072-3660 |
| authorships[1].author.display_name | Minsu Kim |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kim, Minsu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058518459 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7740-6389 |
| authorships[2].author.display_name | Tony S. Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shen, Tony |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018267399 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7732-2815 |
| authorships[3].author.display_name | Martin Ester |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ester, Martin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5023509025 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2620-1479 |
| authorships[4].author.display_name | Jinkyoo Park |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Park, Jinkyoo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035865220 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0503-5558 |
| authorships[5].author.display_name | Sung Soo Ahn |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahn, Sungsoo |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5059653088 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7152-2111 |
| authorships[6].author.display_name | Woo Youn Kim |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kim, Woo Youn |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.04542 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative Flows on Synthetic Pathway for Drug Design |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11407 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9825999736785889 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Innovative Microfluidic and Catalytic Techniques Innovation |
| related_works | https://openalex.org/W4301024388, https://openalex.org/W4391334978, https://openalex.org/W775311126, https://openalex.org/W4300030714, https://openalex.org/W1517876498, https://openalex.org/W2489288131, https://openalex.org/W3021262926, https://openalex.org/W3185513875, https://openalex.org/W2948893645, https://openalex.org/W178986308 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.04542 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.04542 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.04542 |
| primary_location.id | pmh:oai:arXiv.org:2410.04542 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.04542 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.04542 |
| publication_date | 2024-10-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 94 |
| abstract_inverted_index.71 | 119 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.We | 57, 154 |
| abstract_inverted_index.an | 183 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.do | 20 |
| abstract_inverted_index.in | 2, 29, 90, 165 |
| abstract_inverted_index.of | 68, 87, 113, 143, 149, 187 |
| abstract_inverted_index.on | 60, 177 |
| abstract_inverted_index.or | 131, 146 |
| abstract_inverted_index.to | 12, 51, 73, 103 |
| abstract_inverted_index.we | 35, 92 |
| abstract_inverted_index.1.2 | 114 |
| abstract_inverted_index.and | 47, 78, 118, 162, 190 |
| abstract_inverted_index.can | 128 |
| abstract_inverted_index.for | 23, 135, 140, 179 |
| abstract_inverted_index.not | 21 |
| abstract_inverted_index.the | 53, 66, 83, 141, 147 |
| abstract_inverted_index.use | 28 |
| abstract_inverted_index.This | 100 |
| abstract_inverted_index.Vina | 185 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.drug | 3 |
| abstract_inverted_index.flow | 70 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.over | 107 |
| abstract_inverted_index.that | 157 |
| abstract_inverted_index.then | 58 |
| abstract_inverted_index.this | 33, 61 |
| abstract_inverted_index.with | 65, 182 |
| abstract_inverted_index.-8.85 | 188 |
| abstract_inverted_index.34.8% | 191 |
| abstract_inverted_index.flows | 106 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.learn | 104 |
| abstract_inverted_index.newly | 150 |
| abstract_inverted_index.novel | 95 |
| abstract_inverted_index.score | 186 |
| abstract_inverted_index.space | 86, 97 |
| abstract_inverted_index.their | 26 |
| abstract_inverted_index.train | 59 |
| abstract_inverted_index.using | 42 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.across | 168 |
| abstract_inverted_index.action | 85, 96, 109, 133 |
| abstract_inverted_index.blocks | 46, 117 |
| abstract_inverted_index.employ | 129 |
| abstract_inverted_index.gained | 7 |
| abstract_inverted_index.highly | 76 |
| abstract_inverted_index.models | 1, 19, 164 |
| abstract_inverted_index.paper, | 34 |
| abstract_inverted_index.spaces | 110, 134 |
| abstract_inverted_index.target | 170 |
| abstract_inverted_index.RxnFlow | 102, 127, 158, 173 |
| abstract_inverted_index.account | 22 |
| abstract_inverted_index.average | 184 |
| abstract_inverted_index.blocks. | 153 |
| abstract_inverted_index.diverse | 79 |
| abstract_inverted_index.enables | 101 |
| abstract_inverted_index.method. | 99 |
| abstract_inverted_index.million | 115 |
| abstract_inverted_index.process | 64 |
| abstract_inverted_index.propose | 36 |
| abstract_inverted_index.various | 169 |
| abstract_inverted_index.virtual | 14 |
| abstract_inverted_index.without | 122, 137 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.RxnFlow, | 37 |
| abstract_inverted_index.achieves | 174 |
| abstract_inverted_index.allowing | 139 |
| abstract_inverted_index.building | 45, 116, 152 |
| abstract_inverted_index.chemical | 48, 55 |
| abstract_inverted_index.existing | 18, 160 |
| abstract_inverted_index.expanded | 132 |
| abstract_inverted_index.generate | 74 |
| abstract_inverted_index.kcal/mol | 189 |
| abstract_inverted_index.limiting | 25 |
| abstract_inverted_index.mitigate | 82 |
| abstract_inverted_index.modified | 130 |
| abstract_inverted_index.networks | 71 |
| abstract_inverted_index.pathway. | 56 |
| abstract_inverted_index.pathways | 89 |
| abstract_inverted_index.pockets. | 171 |
| abstract_inverted_index.reaction | 49, 120 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.rewarded | 77 |
| abstract_inverted_index.assembles | 40 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.constrain | 52 |
| abstract_inverted_index.discovery | 4 |
| abstract_inverted_index.efficient | 10 |
| abstract_inverted_index.extensive | 108 |
| abstract_inverted_index.implement | 93 |
| abstract_inverted_index.molecular | 44 |
| abstract_inverted_index.molecules | 41 |
| abstract_inverted_index.objective | 67 |
| abstract_inverted_index.overhead. | 125 |
| abstract_inverted_index.practical | 27 |
| abstract_inverted_index.synthetic | 54, 88 |
| abstract_inverted_index.templates | 50, 121 |
| abstract_inverted_index.GFlowNets, | 91 |
| abstract_inverted_index.Generative | 0 |
| abstract_inverted_index.additional | 144 |
| abstract_inverted_index.comprising | 111 |
| abstract_inverted_index.discovered | 151 |
| abstract_inverted_index.generating | 63 |
| abstract_inverted_index.generation | 136 |
| abstract_inverted_index.generative | 69, 105 |
| abstract_inverted_index.molecules. | 80 |
| abstract_inverted_index.objectives | 145 |
| abstract_inverted_index.predefined | 43 |
| abstract_inverted_index.real-world | 30 |
| abstract_inverted_index.scenarios. | 31 |
| abstract_inverted_index.screening. | 15 |
| abstract_inverted_index.sequential | 62 |
| abstract_inverted_index.(GFlowNets) | 72 |
| abstract_inverted_index.brute-force | 13 |
| abstract_inverted_index.demonstrate | 156 |
| abstract_inverted_index.generation, | 181 |
| abstract_inverted_index.outperforms | 159 |
| abstract_inverted_index.performance | 176 |
| abstract_inverted_index.retraining, | 138 |
| abstract_inverted_index.significant | 123 |
| abstract_inverted_index.subsampling | 98 |
| abstract_inverted_index.Furthermore, | 172 |
| abstract_inverted_index.alternatives | 11 |
| abstract_inverted_index.combinations | 112 |
| abstract_inverted_index.introduction | 142 |
| abstract_inverted_index.optimization | 167 |
| abstract_inverted_index.sequentially | 39 |
| abstract_inverted_index.Additionally, | 126 |
| abstract_inverted_index.computational | 124 |
| abstract_inverted_index.incorporation | 148 |
| abstract_inverted_index.experimentally | 155 |
| abstract_inverted_index.fragment-based | 163 |
| abstract_inverted_index.reaction-based | 161 |
| abstract_inverted_index.CrossDocked2020 | 178 |
| abstract_inverted_index.pocket-specific | 166 |
| abstract_inverted_index.state-of-the-art | 175 |
| abstract_inverted_index.synthesizability, | 24 |
| abstract_inverted_index.synthesizability. | 192 |
| abstract_inverted_index.pocket-conditional | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |