Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.11.28.518219
Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.11.28.518219
- https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdf
- OA Status
- green
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310189402
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310189402Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.11.28.518219Digital Object Identifier
- Title
-
Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectomeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-28Full publication date if available
- Authors
-
Benjamin D. Pedigo, Michael Powell, Eric Bridgeford, Michael Winding, Carey E. Priebe, Joshua T VogelsteinList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.11.28.518219Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdfDirect OA link when available
- Concepts
-
Connectome, Generative model, Computer science, Human Connectome Project, Symmetry (geometry), Bilateral symmetry, Artificial intelligence, Generative grammar, Artificial neural network, Machine learning, Neuroscience, Psychology, Functional connectivity, Mathematics, Geometry, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310189402 |
|---|---|
| doi | https://doi.org/10.1101/2022.11.28.518219 |
| ids.doi | https://doi.org/10.1101/2022.11.28.518219 |
| ids.openalex | https://openalex.org/W4310189402 |
| fwci | 0.0 |
| type | preprint |
| title | Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10423 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2804 |
| topics[0].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[0].display_name | Neurobiology and Insect Physiology Research |
| topics[1].id | https://openalex.org/T10702 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Insect and Arachnid Ecology and Behavior |
| topics[2].id | https://openalex.org/T12813 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9648000001907349 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant and Biological Electrophysiology Studies |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45715564 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9247360229492188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[0].display_name | Connectome |
| concepts[1].id | https://openalex.org/C167966045 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6757186055183411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[1].display_name | Generative model |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6307053565979004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C97820695 |
| concepts[3].level | 3 |
| concepts[3].score | 0.612749457359314 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q387749 |
| concepts[3].display_name | Human Connectome Project |
| concepts[4].id | https://openalex.org/C2779886137 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6091182231903076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21030012 |
| concepts[4].display_name | Symmetry (geometry) |
| concepts[5].id | https://openalex.org/C2985276286 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5542612671852112 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q598159 |
| concepts[5].display_name | Bilateral symmetry |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5046094655990601 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C39890363 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4964600205421448 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[7].display_name | Generative grammar |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45551246404647827 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4360588788986206 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4030708968639374 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3344917893409729 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C3018011982 |
| concepts[12].level | 2 |
| concepts[12].score | 0.27936384081840515 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[12].display_name | Functional connectivity |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22471356391906738 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C78519656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[16].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/connectome |
| keywords[0].score | 0.9247360229492188 |
| keywords[0].display_name | Connectome |
| keywords[1].id | https://openalex.org/keywords/generative-model |
| keywords[1].score | 0.6757186055183411 |
| keywords[1].display_name | Generative model |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6307053565979004 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/human-connectome-project |
| keywords[3].score | 0.612749457359314 |
| keywords[3].display_name | Human Connectome Project |
| keywords[4].id | https://openalex.org/keywords/symmetry |
| keywords[4].score | 0.6091182231903076 |
| keywords[4].display_name | Symmetry (geometry) |
| keywords[5].id | https://openalex.org/keywords/bilateral-symmetry |
| keywords[5].score | 0.5542612671852112 |
| keywords[5].display_name | Bilateral symmetry |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5046094655990601 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/generative-grammar |
| keywords[7].score | 0.4964600205421448 |
| keywords[7].display_name | Generative grammar |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.45551246404647827 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4360588788986206 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.4030708968639374 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.3344917893409729 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/functional-connectivity |
| keywords[12].score | 0.27936384081840515 |
| keywords[12].display_name | Functional connectivity |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.22471356391906738 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2022.11.28.518219 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.11.28.518219 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078489506 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9519-1190 |
| authorships[0].author.display_name | Benjamin D. Pedigo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU) |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin D. Pedigo |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Johns Hopkins University (JHU) |
| authorships[1].author.id | https://openalex.org/A5053480593 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2749-3725 |
| authorships[1].author.display_name | Michael Powell |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU) |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mike Powell |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University (JHU) |
| authorships[2].author.id | https://openalex.org/A5085717731 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6115-719X |
| authorships[2].author.display_name | Eric Bridgeford |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU) |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eric W. Bridgeford |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University (JHU) |
| authorships[3].author.id | https://openalex.org/A5045284572 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1965-3266 |
| authorships[3].author.display_name | Michael Winding |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Cambridge |
| authorships[3].institutions[0].id | https://openalex.org/I241749 |
| authorships[3].institutions[0].ror | https://ror.org/013meh722 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Cambridge |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael Winding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Cambridge |
| authorships[4].author.id | https://openalex.org/A5031834098 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Carey E. Priebe |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[4].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU) |
| authorships[4].institutions[0].id | https://openalex.org/I145311948 |
| authorships[4].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Johns Hopkins University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carey E. Priebe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Johns Hopkins University (JHU) |
| authorships[5].author.id | https://openalex.org/A5065441417 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2487-6237 |
| authorships[5].author.display_name | Joshua T Vogelstein |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[5].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU) |
| authorships[5].institutions[0].id | https://openalex.org/I145311948 |
| authorships[5].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Johns Hopkins University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Joshua T. Vogelstein |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Johns Hopkins University (JHU) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10423 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2804 |
| primary_topic.subfield.display_name | Cellular and Molecular Neuroscience |
| primary_topic.display_name | Neurobiology and Insect Physiology Research |
| related_works | https://openalex.org/W3136590534, https://openalex.org/W4280586040, https://openalex.org/W2523870064, https://openalex.org/W4298370694, https://openalex.org/W4306360841, https://openalex.org/W4365211920, https://openalex.org/W3117051909, https://openalex.org/W3126842272, https://openalex.org/W2775079844, https://openalex.org/W2182367256 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.11.28.518219 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.11.28.518219 |
| primary_location.id | doi:10.1101/2022.11.28.518219 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/28/2022.11.28.518219.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.11.28.518219 |
| publication_date | 2022-11-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2949596368, https://openalex.org/W3087638917, https://openalex.org/W3217550879, https://openalex.org/W4296122806, https://openalex.org/W2951641862, https://openalex.org/W3192789395, https://openalex.org/W2954731284, https://openalex.org/W3096195703, https://openalex.org/W1625965622, https://openalex.org/W1551489980, https://openalex.org/W2139421798, https://openalex.org/W3165096146, https://openalex.org/W2951976236, https://openalex.org/W4310136299, https://openalex.org/W4281842027, https://openalex.org/W4252973173, https://openalex.org/W4308369196, https://openalex.org/W2979461843, https://openalex.org/W2048054368, https://openalex.org/W1999985543, https://openalex.org/W2619970632, https://openalex.org/W2004437322, https://openalex.org/W2087543137, https://openalex.org/W2571305441, https://openalex.org/W2288271511, https://openalex.org/W2991351351, https://openalex.org/W2404258945, https://openalex.org/W2754251575, https://openalex.org/W3210074972, https://openalex.org/W2996039144, https://openalex.org/W2531871281, https://openalex.org/W1967184357, https://openalex.org/W1987349051, https://openalex.org/W2940764256, https://openalex.org/W2092098765, https://openalex.org/W3012591046, https://openalex.org/W4307216589, https://openalex.org/W2261263381, https://openalex.org/W2889790583, https://openalex.org/W2963143232, https://openalex.org/W1973396420, https://openalex.org/W2009872283, https://openalex.org/W3013138476, https://openalex.org/W3127723704, https://openalex.org/W3038854314, https://openalex.org/W2996462011, https://openalex.org/W4242108457, https://openalex.org/W2102907934, https://openalex.org/W2006331688, https://openalex.org/W2737838117, https://openalex.org/W1989750897, https://openalex.org/W2167430870, https://openalex.org/W3035965352, https://openalex.org/W3003257820, https://openalex.org/W2342249984, https://openalex.org/W2132022337, https://openalex.org/W2011301426, https://openalex.org/W3150635270, https://openalex.org/W3104227803, https://openalex.org/W3099878876, https://openalex.org/W3105603957 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 53, 61 |
| abstract_inverted_index.By | 115 |
| abstract_inverted_index.We | 66, 95 |
| abstract_inverted_index.an | 33 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 99 |
| abstract_inverted_index.is | 9, 32 |
| abstract_inverted_index.of | 27, 60, 69, 75, 79, 93, 131, 150, 155 |
| abstract_inverted_index.on | 56, 124 |
| abstract_inverted_index.or | 119 |
| abstract_inverted_index.to | 11, 44, 72, 87 |
| abstract_inverted_index.us | 86 |
| abstract_inverted_index.we | 48, 126 |
| abstract_inverted_index.and | 16, 25, 36, 82, 89, 107, 110 |
| abstract_inverted_index.can | 3, 146 |
| abstract_inverted_index.has | 39 |
| abstract_inverted_index.how | 6, 141 |
| abstract_inverted_index.not | 40 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.the | 23, 57, 76, 80, 104, 148 |
| abstract_inverted_index.two | 30 |
| abstract_inverted_index.via | 52 |
| abstract_inverted_index.This | 138 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.been | 41 |
| abstract_inverted_index.both | 102 |
| abstract_inverted_index.case | 54 |
| abstract_inverted_index.cell | 113 |
| abstract_inverted_index.find | 96 |
| abstract_inverted_index.from | 144 |
| abstract_inverted_index.help | 4 |
| abstract_inverted_index.left | 81, 106 |
| abstract_inverted_index.open | 34 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.test | 88 |
| abstract_inverted_index.this | 50, 136 |
| abstract_inverted_index.work | 139 |
| abstract_inverted_index.Here, | 47 |
| abstract_inverted_index.about | 22 |
| abstract_inverted_index.based | 123 |
| abstract_inverted_index.brain | 64 |
| abstract_inverted_index.edges | 122 |
| abstract_inverted_index.right | 83, 108 |
| abstract_inverted_index.shows | 140 |
| abstract_inverted_index.study | 55, 149 |
| abstract_inverted_index.across | 103 |
| abstract_inverted_index.entire | 105 |
| abstract_inverted_index.future | 153 |
| abstract_inverted_index.inform | 147 |
| abstract_inverted_index.larval | 62 |
| abstract_inverted_index.making | 19 |
| abstract_inverted_index.models | 74 |
| abstract_inverted_index.nature | 26 |
| abstract_inverted_index.neural | 7, 156 |
| abstract_inverted_index.refine | 90 |
| abstract_inverted_index.types. | 114 |
| abstract_inverted_index.applied | 43 |
| abstract_inverted_index.between | 29, 111 |
| abstract_inverted_index.certain | 121 |
| abstract_inverted_index.explain | 5 |
| abstract_inverted_index.network | 77 |
| abstract_inverted_index.notions | 68 |
| abstract_inverted_index.present | 128 |
| abstract_inverted_index.problem | 51 |
| abstract_inverted_index.related | 10 |
| abstract_inverted_index.weight, | 125 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.adjusted | 129 |
| abstract_inverted_index.allowing | 85 |
| abstract_inverted_index.analysis | 38 |
| abstract_inverted_index.disease, | 13 |
| abstract_inverted_index.networks | 31, 109, 145 |
| abstract_inverted_index.problem, | 35 |
| abstract_inverted_index.removing | 120 |
| abstract_inverted_index.specific | 112 |
| abstract_inverted_index.symmetry | 59, 133 |
| abstract_inverted_index.Comparing | 1 |
| abstract_inverted_index.behavior. | 17 |
| abstract_inverted_index.bilateral | 58, 132 |
| abstract_inverted_index.exhibited | 134 |
| abstract_inverted_index.genetics, | 12 |
| abstract_inverted_index.learning, | 15 |
| abstract_inverted_index.nanoscale | 45 |
| abstract_inverted_index.rescaling | 116 |
| abstract_inverted_index.structure | 78 |
| abstract_inverted_index.symmetry. | 94 |
| abstract_inverted_index.translate | 67 |
| abstract_inverted_index.Drosophila | 63 |
| abstract_inverted_index.connection | 100, 117 |
| abstract_inverted_index.generative | 73 |
| abstract_inverted_index.inferences | 21, 143 |
| abstract_inverted_index.comparisons | 154 |
| abstract_inverted_index.connectome. | 65, 137 |
| abstract_inverted_index.connectomes | 2 |
| abstract_inverted_index.definitions | 130 |
| abstract_inverted_index.differences | 28, 98 |
| abstract_inverted_index.extensively | 42 |
| abstract_inverted_index.investigate | 49 |
| abstract_inverted_index.significant | 97 |
| abstract_inverted_index.statistical | 20, 142 |
| abstract_inverted_index.structures. | 157 |
| abstract_inverted_index.symmetry” | 71 |
| abstract_inverted_index.connectivity | 8 |
| abstract_inverted_index.connectomes, | 151 |
| abstract_inverted_index.connectomes. | 46 |
| abstract_inverted_index.development, | 14 |
| abstract_inverted_index.facilitating | 152 |
| abstract_inverted_index.hemispheres, | 84 |
| abstract_inverted_index.significance | 24 |
| abstract_inverted_index.“bilateral | 70 |
| abstract_inverted_index.probabilities | 101, 118 |
| abstract_inverted_index.understanding | 92 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5078489506 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I145311948 |
| citation_normalized_percentile.value | 0.1753125 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |