Generative Planning with Fast Collision Checks for High Speed Navigation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.04498
Reasoning about large numbers of diverse plans to achieve high speed navigation in cluttered environments remains a challenge for robotic systems even in the case of perfect perceptual information. Often, this is tackled by methods that iteratively optimize around a prior seeded trajectory and consequently restrict to local optima. We present a novel planning method using normalizing flows (NFs) to encode expert-styled motion primitives. We also present an accelerated collision checking framework that enables rejecting samples from the prior distribution before running them through the NF model for rapid sampling of collision-free trajectories. The choice of an NF as the generator permits a flexible way to encode diverse multi-modal behavior distributions while maintaining a smooth relation to the input space which allows approximating collision checks on NF inputs rather than outputs. We show comparable performance to model predictive path integral control in random cluttered environments and improved exit rates in a cul-de-sac environment. We conclude by discussing our plans for future work to improve both safety and performance of our controller.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.04498
- https://arxiv.org/pdf/2405.04498
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396788258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396788258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.04498Digital Object Identifier
- Title
-
Generative Planning with Fast Collision Checks for High Speed NavigationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-07Full publication date if available
- Authors
-
Craig Knuth, Cora A. Dimmig, Brian BittnerList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.04498Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.04498Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.04498Direct OA link when available
- Concepts
-
Computer science, Collision, Generative grammar, Collision avoidance, Human–computer interaction, Artificial intelligence, Real-time computing, Computer vision, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396788258 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.04498 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.04498 |
| ids.openalex | https://openalex.org/W4396788258 |
| fwci | |
| type | preprint |
| title | Generative Planning with Fast Collision Checks for High Speed Navigation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10586 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Robotic Path Planning Algorithms |
| topics[1].id | https://openalex.org/T10906 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI-based Problem Solving and Planning |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9832000136375427 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.687134861946106 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C121704057 |
| concepts[1].level | 2 |
| concepts[1].score | 0.680818498134613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q352070 |
| concepts[1].display_name | Collision |
| concepts[2].id | https://openalex.org/C39890363 |
| concepts[2].level | 2 |
| concepts[2].score | 0.559244692325592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[2].display_name | Generative grammar |
| concepts[3].id | https://openalex.org/C2780864053 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4472603499889374 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5147495 |
| concepts[3].display_name | Collision avoidance |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4437211751937866 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42801299691200256 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40106064081192017 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3510909676551819 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.31314587593078613 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.687134861946106 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/collision |
| keywords[1].score | 0.680818498134613 |
| keywords[1].display_name | Collision |
| keywords[2].id | https://openalex.org/keywords/generative-grammar |
| keywords[2].score | 0.559244692325592 |
| keywords[2].display_name | Generative grammar |
| keywords[3].id | https://openalex.org/keywords/collision-avoidance |
| keywords[3].score | 0.4472603499889374 |
| keywords[3].display_name | Collision avoidance |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.4437211751937866 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.42801299691200256 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.40106064081192017 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.3510909676551819 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.31314587593078613 |
| keywords[8].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.04498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.04498 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.04498 |
| locations[1].id | doi:10.48550/arxiv.2405.04498 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.04498 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072705469 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2375-1427 |
| authorships[0].author.display_name | Craig Knuth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Knuth, Craig |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049222054 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8132-3535 |
| authorships[1].author.display_name | Cora A. Dimmig |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dimmig, Cora |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017155907 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8694-4317 |
| authorships[2].author.display_name | Brian Bittner |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bittner, Brian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.04498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative Planning with Fast Collision Checks for High Speed Navigation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10586 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Robotic Path Planning Algorithms |
| related_works | https://openalex.org/W2889566344, https://openalex.org/W4317634134, https://openalex.org/W2981729160, https://openalex.org/W4310743282, https://openalex.org/W2380075625, https://openalex.org/W2743212448, https://openalex.org/W1819938260, https://openalex.org/W2340892746, https://openalex.org/W3005999311, https://openalex.org/W3042530408 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.04498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.04498 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.04498 |
| primary_location.id | pmh:oai:arXiv.org:2405.04498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.04498 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.04498 |
| publication_date | 2024-05-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 39, 51, 102, 113, 150 |
| abstract_inverted_index.NF | 85, 97, 126 |
| abstract_inverted_index.We | 49, 64, 131, 153 |
| abstract_inverted_index.an | 67, 96 |
| abstract_inverted_index.as | 98 |
| abstract_inverted_index.by | 33, 155 |
| abstract_inverted_index.in | 12, 22, 141, 149 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.of | 4, 25, 90, 95, 168 |
| abstract_inverted_index.on | 125 |
| abstract_inverted_index.to | 7, 46, 59, 105, 116, 135, 162 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.and | 43, 145, 166 |
| abstract_inverted_index.for | 18, 87, 159 |
| abstract_inverted_index.our | 157, 169 |
| abstract_inverted_index.the | 23, 77, 84, 99, 117 |
| abstract_inverted_index.way | 104 |
| abstract_inverted_index.also | 65 |
| abstract_inverted_index.both | 164 |
| abstract_inverted_index.case | 24 |
| abstract_inverted_index.even | 21 |
| abstract_inverted_index.exit | 147 |
| abstract_inverted_index.from | 76 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.path | 138 |
| abstract_inverted_index.show | 132 |
| abstract_inverted_index.than | 129 |
| abstract_inverted_index.that | 35, 72 |
| abstract_inverted_index.them | 82 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.work | 161 |
| abstract_inverted_index.(NFs) | 58 |
| abstract_inverted_index.about | 1 |
| abstract_inverted_index.flows | 57 |
| abstract_inverted_index.input | 118 |
| abstract_inverted_index.large | 2 |
| abstract_inverted_index.local | 47 |
| abstract_inverted_index.model | 86, 136 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.plans | 6, 158 |
| abstract_inverted_index.prior | 40, 78 |
| abstract_inverted_index.rapid | 88 |
| abstract_inverted_index.rates | 148 |
| abstract_inverted_index.space | 119 |
| abstract_inverted_index.speed | 10 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.which | 120 |
| abstract_inverted_index.while | 111 |
| abstract_inverted_index.Often, | 29 |
| abstract_inverted_index.allows | 121 |
| abstract_inverted_index.around | 38 |
| abstract_inverted_index.before | 80 |
| abstract_inverted_index.checks | 124 |
| abstract_inverted_index.choice | 94 |
| abstract_inverted_index.encode | 60, 106 |
| abstract_inverted_index.future | 160 |
| abstract_inverted_index.inputs | 127 |
| abstract_inverted_index.method | 54 |
| abstract_inverted_index.motion | 62 |
| abstract_inverted_index.random | 142 |
| abstract_inverted_index.rather | 128 |
| abstract_inverted_index.safety | 165 |
| abstract_inverted_index.seeded | 41 |
| abstract_inverted_index.smooth | 114 |
| abstract_inverted_index.achieve | 8 |
| abstract_inverted_index.control | 140 |
| abstract_inverted_index.diverse | 5, 107 |
| abstract_inverted_index.enables | 73 |
| abstract_inverted_index.improve | 163 |
| abstract_inverted_index.methods | 34 |
| abstract_inverted_index.numbers | 3 |
| abstract_inverted_index.optima. | 48 |
| abstract_inverted_index.perfect | 26 |
| abstract_inverted_index.permits | 101 |
| abstract_inverted_index.present | 50, 66 |
| abstract_inverted_index.remains | 15 |
| abstract_inverted_index.robotic | 19 |
| abstract_inverted_index.running | 81 |
| abstract_inverted_index.samples | 75 |
| abstract_inverted_index.systems | 20 |
| abstract_inverted_index.tackled | 32 |
| abstract_inverted_index.through | 83 |
| abstract_inverted_index.behavior | 109 |
| abstract_inverted_index.checking | 70 |
| abstract_inverted_index.conclude | 154 |
| abstract_inverted_index.flexible | 103 |
| abstract_inverted_index.improved | 146 |
| abstract_inverted_index.integral | 139 |
| abstract_inverted_index.optimize | 37 |
| abstract_inverted_index.outputs. | 130 |
| abstract_inverted_index.planning | 53 |
| abstract_inverted_index.relation | 115 |
| abstract_inverted_index.restrict | 45 |
| abstract_inverted_index.sampling | 89 |
| abstract_inverted_index.Reasoning | 0 |
| abstract_inverted_index.challenge | 17 |
| abstract_inverted_index.cluttered | 13, 143 |
| abstract_inverted_index.collision | 69, 123 |
| abstract_inverted_index.framework | 71 |
| abstract_inverted_index.generator | 100 |
| abstract_inverted_index.rejecting | 74 |
| abstract_inverted_index.comparable | 133 |
| abstract_inverted_index.cul-de-sac | 151 |
| abstract_inverted_index.discussing | 156 |
| abstract_inverted_index.navigation | 11 |
| abstract_inverted_index.perceptual | 27 |
| abstract_inverted_index.predictive | 137 |
| abstract_inverted_index.trajectory | 42 |
| abstract_inverted_index.accelerated | 68 |
| abstract_inverted_index.controller. | 170 |
| abstract_inverted_index.iteratively | 36 |
| abstract_inverted_index.maintaining | 112 |
| abstract_inverted_index.multi-modal | 108 |
| abstract_inverted_index.normalizing | 56 |
| abstract_inverted_index.performance | 134, 167 |
| abstract_inverted_index.primitives. | 63 |
| abstract_inverted_index.consequently | 44 |
| abstract_inverted_index.distribution | 79 |
| abstract_inverted_index.environment. | 152 |
| abstract_inverted_index.environments | 14, 144 |
| abstract_inverted_index.information. | 28 |
| abstract_inverted_index.approximating | 122 |
| abstract_inverted_index.distributions | 110 |
| abstract_inverted_index.expert-styled | 61 |
| abstract_inverted_index.trajectories. | 92 |
| abstract_inverted_index.collision-free | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |