Generative Reconstruction of Spatiotemporal Wall-Pressure in Turbulent Boundary Layers via Patchwise Latent Diffusion Article Swipe
YOU?
·
· 2025
· Open Access
·
Wall-pressure fluctuations in turbulent boundary layers drive flow-induced noise, structural vibration, and hydroacoustic disturbances, especially in underwater and aerospace systems. Accurate prediction of their wavenumber-frequency spectra is critical for mitigation and design, yet empirical/analytical models rely on simplifying assumptions and miss the full spatiotemporal complexity, while high-fidelity simulations are prohibitive at high Reynolds numbers. Experimental measurements, though accessible, typically provide only pointwise signals and lack the resolution to recover full spatiotemporal fields. We propose a probabilistic generative framework that couples a patchwise (domain-decomposed) conditional neural field with a latent diffusion model to synthesize spatiotemporal wall-pressure fields under varying pressure-gradient conditions. The model conditions on sparse surface-sensor measurements and a low-cost mean-pressure descriptor, supports zero-shot adaptation to new sensor layouts, and produces ensembles with calibrated uncertainty. Validation against reference data shows accurate recovery of instantaneous fields and key statistics.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.12455
- https://arxiv.org/pdf/2511.12455
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106093403
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106093403Canonical identifier for this work in OpenAlex
- Title
-
Generative Reconstruction of Spatiotemporal Wall-Pressure in Turbulent Boundary Layers via Patchwise Latent DiffusionWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-16Full publication date if available
- Authors
-
Fan, Xiantao, Parikh, Meet Hemant, Liu Yi, Liu-Xin Yang, Guo Jun-yi, Wang Meng, Wang, Jian-XunList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.12455Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.12455Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.12455Direct OA link when available
- Concepts
-
Pointwise, Boundary (topology), Probabilistic logic, Generative model, Turbulence, Computer science, Algorithm, Diffusion, Field (mathematics), Generative grammar, Artificial intelligence, Pattern recognition (psychology), Statistical physics, Data-driven, Representation (politics), Diffusion map, Data assimilation, Flow (mathematics), Physics, Sonar, Geology, Statistical modelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106093403 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7106093403 |
| fwci | 0.0 |
| type | article |
| title | Generative Reconstruction of Spatiotemporal Wall-Pressure in Turbulent Boundary Layers via Patchwise Latent Diffusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.7648571729660034 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T11008 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.08889586478471756 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Aerodynamics and Acoustics in Jet Flows |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.049238547682762146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777984123 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7229728102684021 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9248237 |
| concepts[0].display_name | Pointwise |
| concepts[1].id | https://openalex.org/C62354387 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5595654845237732 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[1].display_name | Boundary (topology) |
| concepts[2].id | https://openalex.org/C49937458 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5222828388214111 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[2].display_name | Probabilistic logic |
| concepts[3].id | https://openalex.org/C167966045 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4966307282447815 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[3].display_name | Generative model |
| concepts[4].id | https://openalex.org/C196558001 |
| concepts[4].level | 2 |
| concepts[4].score | 0.495990127325058 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[4].display_name | Turbulence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.47961199283599854 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45395225286483765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C69357855 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44965195655822754 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[7].display_name | Diffusion |
| concepts[8].id | https://openalex.org/C9652623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44566279649734497 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[8].display_name | Field (mathematics) |
| concepts[9].id | https://openalex.org/C39890363 |
| concepts[9].level | 2 |
| concepts[9].score | 0.369206964969635 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[9].display_name | Generative grammar |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36027345061302185 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35907527804374695 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C121864883 |
| concepts[12].level | 1 |
| concepts[12].score | 0.357017457485199 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[12].display_name | Statistical physics |
| concepts[13].id | https://openalex.org/C2780440489 |
| concepts[13].level | 2 |
| concepts[13].score | 0.31082189083099365 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5227278 |
| concepts[13].display_name | Data-driven |
| concepts[14].id | https://openalex.org/C2776359362 |
| concepts[14].level | 3 |
| concepts[14].score | 0.29699885845184326 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[14].display_name | Representation (politics) |
| concepts[15].id | https://openalex.org/C55128770 |
| concepts[15].level | 4 |
| concepts[15].score | 0.2824719548225403 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5275440 |
| concepts[15].display_name | Diffusion map |
| concepts[16].id | https://openalex.org/C24552861 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2730955183506012 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2670177 |
| concepts[16].display_name | Data assimilation |
| concepts[17].id | https://openalex.org/C38349280 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2683759033679962 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[17].display_name | Flow (mathematics) |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.25823789834976196 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C555745239 |
| concepts[19].level | 2 |
| concepts[19].score | 0.25745975971221924 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q133220 |
| concepts[19].display_name | Sonar |
| concepts[20].id | https://openalex.org/C127313418 |
| concepts[20].level | 0 |
| concepts[20].score | 0.25163978338241577 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[20].display_name | Geology |
| concepts[21].id | https://openalex.org/C114289077 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2516268491744995 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[21].display_name | Statistical model |
| keywords[0].id | https://openalex.org/keywords/pointwise |
| keywords[0].score | 0.7229728102684021 |
| keywords[0].display_name | Pointwise |
| keywords[1].id | https://openalex.org/keywords/boundary |
| keywords[1].score | 0.5595654845237732 |
| keywords[1].display_name | Boundary (topology) |
| keywords[2].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[2].score | 0.5222828388214111 |
| keywords[2].display_name | Probabilistic logic |
| keywords[3].id | https://openalex.org/keywords/generative-model |
| keywords[3].score | 0.4966307282447815 |
| keywords[3].display_name | Generative model |
| keywords[4].id | https://openalex.org/keywords/turbulence |
| keywords[4].score | 0.495990127325058 |
| keywords[4].display_name | Turbulence |
| keywords[5].id | https://openalex.org/keywords/diffusion |
| keywords[5].score | 0.44965195655822754 |
| keywords[5].display_name | Diffusion |
| keywords[6].id | https://openalex.org/keywords/field |
| keywords[6].score | 0.44566279649734497 |
| keywords[6].display_name | Field (mathematics) |
| keywords[7].id | https://openalex.org/keywords/generative-grammar |
| keywords[7].score | 0.369206964969635 |
| keywords[7].display_name | Generative grammar |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.12455 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.12455 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.12455 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A4360887282 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fan, Xiantao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fan, Xiantao |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Parikh, Meet Hemant |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Parikh, Meet Hemant |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2097266009 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9971-6364 |
| authorships[2].author.display_name | Liu Yi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Yi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A4280789622 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Liu-Xin Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Xin-Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A1857298135 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Guo Jun-yi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guo, Junyi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A2080387516 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7588-6040 |
| authorships[5].author.display_name | Wang Meng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang, Meng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A4221729182 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Wang, Jian-Xun |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wang, Jian-Xun |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.12455 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Generative Reconstruction of Spatiotemporal Wall-Pressure in Turbulent Boundary Layers via Patchwise Latent Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:39:43.309859 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.7648571729660034 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.12455 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.12455 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.12455 |
| primary_location.id | pmh:oai:arXiv.org:2511.12455 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.12455 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.12455 |
| publication_date | 2025-11-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 74, 80, 87, 108 |
| abstract_inverted_index.We | 72 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.in | 2, 15 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.of | 22, 132 |
| abstract_inverted_index.on | 36, 103 |
| abstract_inverted_index.to | 67, 91, 115 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 11, 17, 30, 39, 63, 107, 119, 135 |
| abstract_inverted_index.are | 48 |
| abstract_inverted_index.for | 28 |
| abstract_inverted_index.key | 136 |
| abstract_inverted_index.new | 116 |
| abstract_inverted_index.the | 41, 65 |
| abstract_inverted_index.yet | 32 |
| abstract_inverted_index.data | 128 |
| abstract_inverted_index.full | 42, 69 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.lack | 64 |
| abstract_inverted_index.miss | 40 |
| abstract_inverted_index.only | 60 |
| abstract_inverted_index.rely | 35 |
| abstract_inverted_index.that | 78 |
| abstract_inverted_index.with | 86, 122 |
| abstract_inverted_index.drive | 6 |
| abstract_inverted_index.field | 85 |
| abstract_inverted_index.model | 90, 101 |
| abstract_inverted_index.shows | 129 |
| abstract_inverted_index.their | 23 |
| abstract_inverted_index.under | 96 |
| abstract_inverted_index.while | 45 |
| abstract_inverted_index.fields | 95, 134 |
| abstract_inverted_index.latent | 88 |
| abstract_inverted_index.layers | 5 |
| abstract_inverted_index.models | 34 |
| abstract_inverted_index.neural | 84 |
| abstract_inverted_index.noise, | 8 |
| abstract_inverted_index.sensor | 117 |
| abstract_inverted_index.sparse | 104 |
| abstract_inverted_index.though | 56 |
| abstract_inverted_index.against | 126 |
| abstract_inverted_index.couples | 79 |
| abstract_inverted_index.design, | 31 |
| abstract_inverted_index.fields. | 71 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.provide | 59 |
| abstract_inverted_index.recover | 68 |
| abstract_inverted_index.signals | 62 |
| abstract_inverted_index.spectra | 25 |
| abstract_inverted_index.varying | 97 |
| abstract_inverted_index.Accurate | 20 |
| abstract_inverted_index.Reynolds | 52 |
| abstract_inverted_index.accurate | 130 |
| abstract_inverted_index.boundary | 4 |
| abstract_inverted_index.critical | 27 |
| abstract_inverted_index.layouts, | 118 |
| abstract_inverted_index.low-cost | 109 |
| abstract_inverted_index.numbers. | 53 |
| abstract_inverted_index.produces | 120 |
| abstract_inverted_index.recovery | 131 |
| abstract_inverted_index.supports | 112 |
| abstract_inverted_index.systems. | 19 |
| abstract_inverted_index.aerospace | 18 |
| abstract_inverted_index.diffusion | 89 |
| abstract_inverted_index.ensembles | 121 |
| abstract_inverted_index.framework | 77 |
| abstract_inverted_index.patchwise | 81 |
| abstract_inverted_index.pointwise | 61 |
| abstract_inverted_index.reference | 127 |
| abstract_inverted_index.turbulent | 3 |
| abstract_inverted_index.typically | 58 |
| abstract_inverted_index.zero-shot | 113 |
| abstract_inverted_index.Validation | 125 |
| abstract_inverted_index.adaptation | 114 |
| abstract_inverted_index.calibrated | 123 |
| abstract_inverted_index.conditions | 102 |
| abstract_inverted_index.especially | 14 |
| abstract_inverted_index.generative | 76 |
| abstract_inverted_index.mitigation | 29 |
| abstract_inverted_index.prediction | 21 |
| abstract_inverted_index.resolution | 66 |
| abstract_inverted_index.structural | 9 |
| abstract_inverted_index.synthesize | 92 |
| abstract_inverted_index.underwater | 16 |
| abstract_inverted_index.vibration, | 10 |
| abstract_inverted_index.accessible, | 57 |
| abstract_inverted_index.assumptions | 38 |
| abstract_inverted_index.complexity, | 44 |
| abstract_inverted_index.conditional | 83 |
| abstract_inverted_index.conditions. | 99 |
| abstract_inverted_index.descriptor, | 111 |
| abstract_inverted_index.prohibitive | 49 |
| abstract_inverted_index.simplifying | 37 |
| abstract_inverted_index.simulations | 47 |
| abstract_inverted_index.statistics. | 137 |
| abstract_inverted_index.Experimental | 54 |
| abstract_inverted_index.flow-induced | 7 |
| abstract_inverted_index.fluctuations | 1 |
| abstract_inverted_index.measurements | 106 |
| abstract_inverted_index.uncertainty. | 124 |
| abstract_inverted_index.Wall-pressure | 0 |
| abstract_inverted_index.disturbances, | 13 |
| abstract_inverted_index.high-fidelity | 46 |
| abstract_inverted_index.hydroacoustic | 12 |
| abstract_inverted_index.instantaneous | 133 |
| abstract_inverted_index.mean-pressure | 110 |
| abstract_inverted_index.measurements, | 55 |
| abstract_inverted_index.probabilistic | 75 |
| abstract_inverted_index.wall-pressure | 94 |
| abstract_inverted_index.spatiotemporal | 43, 70, 93 |
| abstract_inverted_index.surface-sensor | 105 |
| abstract_inverted_index.pressure-gradient | 98 |
| abstract_inverted_index.(domain-decomposed) | 82 |
| abstract_inverted_index.empirical/analytical | 33 |
| abstract_inverted_index.wavenumber-frequency | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.81652163 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |