Generative World Explorer Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.11844
Planning with partial observation is a central challenge in embodied AI. A majority of prior works have tackled this challenge by developing agents that physically explore their environment to update their beliefs about the world state. In contrast, humans can $\textit{imagine}$ unseen parts of the world through a mental exploration and $\textit{revise}$ their beliefs with imagined observations. Such updated beliefs can allow them to make more informed decisions, without necessitating the physical exploration of the world at all times. To achieve this human-like ability, we introduce the $\textit{Generative World Explorer (Genex)}$, an egocentric world exploration framework that allows an agent to mentally explore a large-scale 3D world (e.g., urban scenes) and acquire imagined observations to update its belief. This updated belief will then help the agent to make a more informed decision at the current step. To train $\textit{Genex}$, we create a synthetic urban scene dataset, Genex-DB. Our experimental results demonstrate that (1) $\textit{Genex}$ can generate high-quality and consistent observations during long-horizon exploration of a large virtual physical world and (2) the beliefs updated with the generated observations can inform an existing decision-making model (e.g., an LLM agent) to make better plans.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.11844
- https://arxiv.org/pdf/2411.11844
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404648165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404648165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.11844Digital Object Identifier
- Title
-
Generative World ExplorerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-18Full publication date if available
- Authors
-
Taiming Lu, Tianmin Shu, Alan Yuille, Daniel Khashabi, Jieneng ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.11844Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.11844Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.11844Direct OA link when available
- Concepts
-
Generative grammar, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404648165 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.11844 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.11844 |
| ids.openalex | https://openalex.org/W4404648165 |
| fwci | |
| type | preprint |
| title | Generative World Explorer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11574 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6229000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Artificial Intelligence in Games |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6451637744903564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.356170654296875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3132094740867615 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.6451637744903564 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.356170654296875 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3132094740867615 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.11844 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.11844 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.11844 |
| locations[1].id | doi:10.48550/arxiv.2411.11844 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.11844 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5099446810 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Taiming Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Taiming |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005908625 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tianmin Shu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shu, Tianmin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086706224 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5207-9249 |
| authorships[2].author.display_name | Alan Yuille |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuille, Alan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043628255 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-7664-2230 |
| authorships[3].author.display_name | Daniel Khashabi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Khashabi, Daniel |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066600512 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6692-4455 |
| authorships[4].author.display_name | Jieneng Chen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chen, Jieneng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.11844 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generative World Explorer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11574 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6229000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Artificial Intelligence in Games |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.11844 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.11844 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.11844 |
| primary_location.id | pmh:oai:arXiv.org:2411.11844 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.11844 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.11844 |
| publication_date | 2024-11-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 11 |
| abstract_inverted_index.a | 5, 47, 103, 128, 141, 164 |
| abstract_inverted_index.3D | 105 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.To | 79, 136 |
| abstract_inverted_index.an | 91, 98, 180, 185 |
| abstract_inverted_index.at | 76, 132 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 13, 43, 73, 163 |
| abstract_inverted_index.to | 28, 63, 100, 114, 126, 188 |
| abstract_inverted_index.we | 84, 139 |
| abstract_inverted_index.(1) | 152 |
| abstract_inverted_index.(2) | 170 |
| abstract_inverted_index.AI. | 10 |
| abstract_inverted_index.LLM | 186 |
| abstract_inverted_index.Our | 147 |
| abstract_inverted_index.all | 77 |
| abstract_inverted_index.and | 50, 110, 157, 169 |
| abstract_inverted_index.can | 39, 60, 154, 178 |
| abstract_inverted_index.its | 116 |
| abstract_inverted_index.the | 33, 44, 70, 74, 86, 124, 133, 171, 175 |
| abstract_inverted_index.Such | 57 |
| abstract_inverted_index.This | 118 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.help | 123 |
| abstract_inverted_index.make | 64, 127, 189 |
| abstract_inverted_index.more | 65, 129 |
| abstract_inverted_index.that | 23, 96, 151 |
| abstract_inverted_index.them | 62 |
| abstract_inverted_index.then | 122 |
| abstract_inverted_index.this | 18, 81 |
| abstract_inverted_index.will | 121 |
| abstract_inverted_index.with | 1, 54, 174 |
| abstract_inverted_index.World | 88 |
| abstract_inverted_index.about | 32 |
| abstract_inverted_index.agent | 99, 125 |
| abstract_inverted_index.allow | 61 |
| abstract_inverted_index.large | 165 |
| abstract_inverted_index.model | 183 |
| abstract_inverted_index.parts | 42 |
| abstract_inverted_index.prior | 14 |
| abstract_inverted_index.scene | 144 |
| abstract_inverted_index.step. | 135 |
| abstract_inverted_index.their | 26, 30, 52 |
| abstract_inverted_index.train | 137 |
| abstract_inverted_index.urban | 108, 143 |
| abstract_inverted_index.works | 15 |
| abstract_inverted_index.world | 34, 45, 75, 93, 106, 168 |
| abstract_inverted_index.(e.g., | 107, 184 |
| abstract_inverted_index.agent) | 187 |
| abstract_inverted_index.agents | 22 |
| abstract_inverted_index.allows | 97 |
| abstract_inverted_index.belief | 120 |
| abstract_inverted_index.better | 190 |
| abstract_inverted_index.create | 140 |
| abstract_inverted_index.during | 160 |
| abstract_inverted_index.humans | 38 |
| abstract_inverted_index.inform | 179 |
| abstract_inverted_index.mental | 48 |
| abstract_inverted_index.plans. | 191 |
| abstract_inverted_index.state. | 35 |
| abstract_inverted_index.times. | 78 |
| abstract_inverted_index.unseen | 41 |
| abstract_inverted_index.update | 29, 115 |
| abstract_inverted_index.achieve | 80 |
| abstract_inverted_index.acquire | 111 |
| abstract_inverted_index.belief. | 117 |
| abstract_inverted_index.beliefs | 31, 53, 59, 172 |
| abstract_inverted_index.central | 6 |
| abstract_inverted_index.current | 134 |
| abstract_inverted_index.explore | 25, 102 |
| abstract_inverted_index.partial | 2 |
| abstract_inverted_index.results | 149 |
| abstract_inverted_index.scenes) | 109 |
| abstract_inverted_index.tackled | 17 |
| abstract_inverted_index.through | 46 |
| abstract_inverted_index.updated | 58, 119, 173 |
| abstract_inverted_index.virtual | 166 |
| abstract_inverted_index.without | 68 |
| abstract_inverted_index.Explorer | 89 |
| abstract_inverted_index.Planning | 0 |
| abstract_inverted_index.ability, | 83 |
| abstract_inverted_index.dataset, | 145 |
| abstract_inverted_index.decision | 131 |
| abstract_inverted_index.embodied | 9 |
| abstract_inverted_index.existing | 181 |
| abstract_inverted_index.generate | 155 |
| abstract_inverted_index.imagined | 55, 112 |
| abstract_inverted_index.informed | 66, 130 |
| abstract_inverted_index.majority | 12 |
| abstract_inverted_index.mentally | 101 |
| abstract_inverted_index.physical | 71, 167 |
| abstract_inverted_index.Genex-DB. | 146 |
| abstract_inverted_index.challenge | 7, 19 |
| abstract_inverted_index.contrast, | 37 |
| abstract_inverted_index.framework | 95 |
| abstract_inverted_index.generated | 176 |
| abstract_inverted_index.introduce | 85 |
| abstract_inverted_index.synthetic | 142 |
| abstract_inverted_index.(Genex)}$, | 90 |
| abstract_inverted_index.consistent | 158 |
| abstract_inverted_index.decisions, | 67 |
| abstract_inverted_index.developing | 21 |
| abstract_inverted_index.egocentric | 92 |
| abstract_inverted_index.human-like | 82 |
| abstract_inverted_index.physically | 24 |
| abstract_inverted_index.demonstrate | 150 |
| abstract_inverted_index.environment | 27 |
| abstract_inverted_index.exploration | 49, 72, 94, 162 |
| abstract_inverted_index.large-scale | 104 |
| abstract_inverted_index.observation | 3 |
| abstract_inverted_index.experimental | 148 |
| abstract_inverted_index.high-quality | 156 |
| abstract_inverted_index.long-horizon | 161 |
| abstract_inverted_index.observations | 113, 159, 177 |
| abstract_inverted_index.necessitating | 69 |
| abstract_inverted_index.observations. | 56 |
| abstract_inverted_index.decision-making | 182 |
| abstract_inverted_index.$\textit{Genex}$ | 153 |
| abstract_inverted_index.$\textit{Genex}$, | 138 |
| abstract_inverted_index.$\textit{revise}$ | 51 |
| abstract_inverted_index.$\textit{imagine}$ | 40 |
| abstract_inverted_index.$\textit{Generative | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |