Generic User-guided Interaction Paradigm for Precise Post-slice-wise Processing of Tomographic Deep Learning Segmentations Utilizing Graph Cut and Graph Segmentation Article Swipe
Gerald Zwettler
,
Werner Backfrieder
,
Ronald A. Karwoski
,
David Iii
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5220/0010190702350244
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5220/0010190702350244
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0010190702350244
- OA Status
- gold
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3131402979
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3131402979Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0010190702350244Digital Object Identifier
- Title
-
Generic User-guided Interaction Paradigm for Precise Post-slice-wise Processing of Tomographic Deep Learning Segmentations Utilizing Graph Cut and Graph SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Gerald Zwettler, Werner Backfrieder, Ronald A. Karwoski, David IiiList of authors in order
- Landing page
-
https://doi.org/10.5220/0010190702350244Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0010190702350244Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Graph, Computer vision, Deep learning, Image segmentation, Pattern recognition (psychology), Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3131402979 |
|---|---|
| doi | https://doi.org/10.5220/0010190702350244 |
| ids.doi | https://doi.org/10.5220/0010190702350244 |
| ids.mag | 3131402979 |
| ids.openalex | https://openalex.org/W3131402979 |
| fwci | 0.12670818 |
| type | article |
| title | Generic User-guided Interaction Paradigm for Precise Post-slice-wise Processing of Tomographic Deep Learning Segmentations Utilizing Graph Cut and Graph Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 244 |
| biblio.first_page | 235 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9742000102996826 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9690999984741211 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9610000252723694 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7534202337265015 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6032935976982117 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.589539110660553 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5795995593070984 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4959324300289154 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4783417880535126 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43466609716415405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3748658001422882 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21366336941719055 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7534202337265015 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6032935976982117 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.589539110660553 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.5795995593070984 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.4959324300289154 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4783417880535126 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.43466609716415405 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3748658001422882 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.21366336941719055 |
| keywords[8].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.5220/0010190702350244 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| locations[0].landing_page_url | https://doi.org/10.5220/0010190702350244 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003644731 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4966-6853 |
| authorships[0].author.display_name | Gerald Zwettler |
| authorships[0].countries | AT, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1330342723 |
| authorships[0].affiliations[0].raw_affiliation_string | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country --- |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210136249 |
| authorships[0].affiliations[1].raw_affiliation_string | Medical Informatics, Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country --- |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210136249 |
| authorships[0].affiliations[2].raw_affiliation_string | Research Group Advanced Information Systems and Technology (AIST), Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I4210136249 |
| authorships[0].institutions[0].ror | https://ror.org/03jqp6d56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210136249 |
| authorships[0].institutions[0].country_code | AT |
| authorships[0].institutions[0].display_name | University of Applied Sciences Upper Austria |
| authorships[0].institutions[1].id | https://openalex.org/I1330342723 |
| authorships[0].institutions[1].ror | https://ror.org/02qp3tb03 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I1330342723 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Mayo Clinic |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gerald Zwettler |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country ---, Medical Informatics, Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country ---, Research Group Advanced Information Systems and Technology (AIST), Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5053566251 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Werner Backfrieder |
| authorships[1].countries | AT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210136249 |
| authorships[1].affiliations[0].raw_affiliation_string | Medical Informatics, Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I4210136249 |
| authorships[1].institutions[0].ror | https://ror.org/03jqp6d56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210136249 |
| authorships[1].institutions[0].country_code | AT |
| authorships[1].institutions[0].display_name | University of Applied Sciences Upper Austria |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Werner Backfrieder |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Medical Informatics, Department of Software Engineering, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5110334084 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ronald A. Karwoski |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1330342723 |
| authorships[2].affiliations[0].raw_affiliation_string | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country --- |
| authorships[2].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[2].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Mayo Clinic |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ronald Karwoski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country --- |
| authorships[3].author.id | https://openalex.org/A5098615530 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | David Iii |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330342723 |
| authorships[3].affiliations[0].raw_affiliation_string | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country --- |
| authorships[3].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mayo Clinic |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | David Iii |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A., --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0010190702350244 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Generic User-guided Interaction Paradigm for Precise Post-slice-wise Processing of Tomographic Deep Learning Segmentations Utilizing Graph Cut and Graph Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9742000102996826 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W4304166257, https://openalex.org/W4294635752, https://openalex.org/W4383066092, https://openalex.org/W3215138031, https://openalex.org/W4379231730, https://openalex.org/W1522196789 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5220/0010190702350244 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0010190702350244 |
| primary_location.id | doi:10.5220/0010190702350244 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| primary_location.landing_page_url | https://doi.org/10.5220/0010190702350244 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.41380265 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |