Genetic Algorithm-Based Particle Swarm Optimization Approach to Reschedule High-Speed Railway Timetables: A Case Study in China Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1155/2019/6090742
In this study, a mixed integer programming model is proposed to address timetable rescheduling problem under primary delays. The model considers timetable rescheduling strategies such as retiming, reordering, and adjusting stop pattern. A genetic algorithm-based particle swarm optimization algorithm is developed where position vector and genetic evolution operators are reconstructed based on departure and arrival time of each train at stations. Finally, a numerical experiment of Beijing-Shanghai high-speed railway corridor is implemented to test the proposed model and algorithm. The results show that the objective value of proposed method is decreased by 15.6%, 48.8%, and 25.7% compared with the first-come-first-service strategy, the first-schedule-first-service strategy, and the particle swarm optimization, respectively. The gap between the best solution obtained by the proposed method and the optimum solution computed by CPLEX solver is around 19.6%. All delay cases are addressed within acceptable time (within 1.5 min). Moreover, the case study gives insight into the correlation between delay propagation and headway. The primary delays occur in high-density period (scheduled headway closes to the minimum headway), which results in a great delay propagation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2019/6090742
- https://downloads.hindawi.com/journals/jat/2019/6090742.pdf
- OA Status
- gold
- Cited By
- 42
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2924893847
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2924893847Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2019/6090742Digital Object Identifier
- Title
-
Genetic Algorithm-Based Particle Swarm Optimization Approach to Reschedule High-Speed Railway Timetables: A Case Study in ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-20Full publication date if available
- Authors
-
Mingming Wang, Li Wang, Xinyue Xu, Yong Qin, Lingqiao QinList of authors in order
- Landing page
-
https://doi.org/10.1155/2019/6090742Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jat/2019/6090742.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jat/2019/6090742.pdfDirect OA link when available
- Concepts
-
Headway, Particle swarm optimization, Genetic algorithm, Solver, Schedule, Mathematical optimization, Computer science, Algorithm, Simulation, Mathematics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 10, 2023: 7, 2022: 9, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2924893847 |
|---|---|
| doi | https://doi.org/10.1155/2019/6090742 |
| ids.doi | https://doi.org/10.1155/2019/6090742 |
| ids.mag | 2924893847 |
| ids.openalex | https://openalex.org/W2924893847 |
| fwci | 4.17162019 |
| type | article |
| title | Genetic Algorithm-Based Particle Swarm Optimization Approach to Reschedule High-Speed Railway Timetables: A Case Study in China |
| awards[0].id | https://openalex.org/G3771423243 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 71701010 & 61830002 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5342614618 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2016YFB 1200401 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2019 |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11568 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Railway Systems and Energy Efficiency |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11223 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Maritime Ports and Logistics |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C2779240695 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7194890975952148 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4383682 |
| concepts[0].display_name | Headway |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7141419649124146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C8880873 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6440086364746094 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[2].display_name | Genetic algorithm |
| concepts[3].id | https://openalex.org/C2778770139 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5678563117980957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1966904 |
| concepts[3].display_name | Solver |
| concepts[4].id | https://openalex.org/C68387754 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5610631108283997 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7271585 |
| concepts[4].display_name | Schedule |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.551294207572937 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5343683362007141 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5331425070762634 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3301440179347992 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20498475432395935 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/headway |
| keywords[0].score | 0.7194890975952148 |
| keywords[0].display_name | Headway |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.7141419649124146 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[2].score | 0.6440086364746094 |
| keywords[2].display_name | Genetic algorithm |
| keywords[3].id | https://openalex.org/keywords/solver |
| keywords[3].score | 0.5678563117980957 |
| keywords[3].display_name | Solver |
| keywords[4].id | https://openalex.org/keywords/schedule |
| keywords[4].score | 0.5610631108283997 |
| keywords[4].display_name | Schedule |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.551294207572937 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5343683362007141 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.5331425070762634 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.3301440179347992 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.20498475432395935 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1155/2019/6090742 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S75054922 |
| locations[0].source.issn | 0197-6729, 2042-3195 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0197-6729 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Transportation |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jat/2019/6090742.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Transportation |
| locations[0].landing_page_url | https://doi.org/10.1155/2019/6090742 |
| locations[1].id | pmh:oai:doaj.org/article:d5603e326fb845f7b1847dcebbe954b4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Transportation, Vol 2019 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/d5603e326fb845f7b1847dcebbe954b4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103262749 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6269-6742 |
| authorships[0].author.display_name | Mingming Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Traffic and Transportation, State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingming Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Traffic and Transportation, State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5100335949 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1090-9248 |
| authorships[1].author.display_name | Li Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5013397647 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-8154-2336 |
| authorships[2].author.display_name | Xinyue Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinyue Xu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5088716214 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6519-8316 |
| authorships[3].author.display_name | Yong Qin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yong Qin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5089043867 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2861-4090 |
| authorships[4].author.display_name | Lingqiao Qin |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[4].affiliations[0].raw_affiliation_string | TOPS Laboratory, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Wisconsin, USA |
| authorships[4].institutions[0].id | https://openalex.org/I135310074 |
| authorships[4].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lingqiao Qin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | TOPS Laboratory, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Wisconsin, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jat/2019/6090742.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Genetic Algorithm-Based Particle Swarm Optimization Approach to Reschedule High-Speed Railway Timetables: A Case Study in China |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11568 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Railway Systems and Energy Efficiency |
| related_works | https://openalex.org/W1990084320, https://openalex.org/W3011309105, https://openalex.org/W2363400661, https://openalex.org/W2140196366, https://openalex.org/W2051775676, https://openalex.org/W44667219, https://openalex.org/W4313172028, https://openalex.org/W2345649773, https://openalex.org/W2902251460, https://openalex.org/W3126888195 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2019/6090742 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S75054922 |
| best_oa_location.source.issn | 0197-6729, 2042-3195 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0197-6729 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Transportation |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jat/2019/6090742.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Transportation |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2019/6090742 |
| primary_location.id | doi:10.1155/2019/6090742 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S75054922 |
| primary_location.source.issn | 0197-6729, 2042-3195 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0197-6729 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Transportation |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jat/2019/6090742.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Transportation |
| primary_location.landing_page_url | https://doi.org/10.1155/2019/6090742 |
| publication_date | 2019-03-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2519123864, https://openalex.org/W2158515881, https://openalex.org/W2899178401, https://openalex.org/W2134131633, https://openalex.org/W2018855219, https://openalex.org/W2177253070, https://openalex.org/W2101834520, https://openalex.org/W2898623474, https://openalex.org/W1954876655, https://openalex.org/W1979100315, https://openalex.org/W2079246731, https://openalex.org/W2144382499, https://openalex.org/W2033454236, https://openalex.org/W2504718941, https://openalex.org/W2908211935, https://openalex.org/W2155268449, https://openalex.org/W2792839095, https://openalex.org/W2029591632, https://openalex.org/W2045565802, https://openalex.org/W2166522136, https://openalex.org/W2046844497, https://openalex.org/W2031545009, https://openalex.org/W2082758482, https://openalex.org/W2063735682, https://openalex.org/W2028900733, https://openalex.org/W2539236113, https://openalex.org/W2057411721, https://openalex.org/W2293789805, https://openalex.org/W2011483065, https://openalex.org/W2147998726, https://openalex.org/W2270082749, https://openalex.org/W2790796102, https://openalex.org/W2183843206, https://openalex.org/W2081347866, https://openalex.org/W2509953349, https://openalex.org/W2623693924, https://openalex.org/W2887126012, https://openalex.org/W2604096579 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 32 |
| abstract_inverted_index.a | 3, 62, 174 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 25 |
| abstract_inverted_index.at | 59 |
| abstract_inverted_index.by | 91, 117, 126 |
| abstract_inverted_index.in | 161, 173 |
| abstract_inverted_index.is | 8, 39, 70, 89, 129 |
| abstract_inverted_index.of | 56, 65, 86 |
| abstract_inverted_index.on | 51 |
| abstract_inverted_index.to | 10, 72, 167 |
| abstract_inverted_index.1.5 | 141 |
| abstract_inverted_index.All | 132 |
| abstract_inverted_index.The | 18, 79, 110, 157 |
| abstract_inverted_index.and | 28, 44, 53, 77, 94, 104, 121, 155 |
| abstract_inverted_index.are | 48, 135 |
| abstract_inverted_index.gap | 111 |
| abstract_inverted_index.the | 74, 83, 98, 101, 105, 113, 118, 122, 144, 150, 168 |
| abstract_inverted_index.best | 114 |
| abstract_inverted_index.case | 145 |
| abstract_inverted_index.each | 57 |
| abstract_inverted_index.into | 149 |
| abstract_inverted_index.show | 81 |
| abstract_inverted_index.stop | 30 |
| abstract_inverted_index.such | 24 |
| abstract_inverted_index.test | 73 |
| abstract_inverted_index.that | 82 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.time | 55, 139 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.25.7% | 95 |
| abstract_inverted_index.CPLEX | 127 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.cases | 134 |
| abstract_inverted_index.delay | 133, 153, 176 |
| abstract_inverted_index.gives | 147 |
| abstract_inverted_index.great | 175 |
| abstract_inverted_index.min). | 142 |
| abstract_inverted_index.mixed | 4 |
| abstract_inverted_index.model | 7, 19, 76 |
| abstract_inverted_index.occur | 160 |
| abstract_inverted_index.study | 146 |
| abstract_inverted_index.swarm | 36, 107 |
| abstract_inverted_index.train | 58 |
| abstract_inverted_index.under | 15 |
| abstract_inverted_index.value | 85 |
| abstract_inverted_index.where | 41 |
| abstract_inverted_index.which | 171 |
| abstract_inverted_index.15.6%, | 92 |
| abstract_inverted_index.19.6%. | 131 |
| abstract_inverted_index.48.8%, | 93 |
| abstract_inverted_index.around | 130 |
| abstract_inverted_index.closes | 166 |
| abstract_inverted_index.delays | 159 |
| abstract_inverted_index.method | 88, 120 |
| abstract_inverted_index.period | 163 |
| abstract_inverted_index.solver | 128 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.vector | 43 |
| abstract_inverted_index.within | 137 |
| abstract_inverted_index.(within | 140 |
| abstract_inverted_index.address | 11 |
| abstract_inverted_index.arrival | 54 |
| abstract_inverted_index.between | 112, 152 |
| abstract_inverted_index.delays. | 17 |
| abstract_inverted_index.genetic | 33, 45 |
| abstract_inverted_index.headway | 165 |
| abstract_inverted_index.insight | 148 |
| abstract_inverted_index.integer | 5 |
| abstract_inverted_index.minimum | 169 |
| abstract_inverted_index.optimum | 123 |
| abstract_inverted_index.primary | 16, 158 |
| abstract_inverted_index.problem | 14 |
| abstract_inverted_index.railway | 68 |
| abstract_inverted_index.results | 80, 172 |
| abstract_inverted_index.Finally, | 61 |
| abstract_inverted_index.compared | 96 |
| abstract_inverted_index.computed | 125 |
| abstract_inverted_index.corridor | 69 |
| abstract_inverted_index.headway. | 156 |
| abstract_inverted_index.obtained | 116 |
| abstract_inverted_index.particle | 35, 106 |
| abstract_inverted_index.pattern. | 31 |
| abstract_inverted_index.position | 42 |
| abstract_inverted_index.proposed | 9, 75, 87, 119 |
| abstract_inverted_index.solution | 115, 124 |
| abstract_inverted_index.Moreover, | 143 |
| abstract_inverted_index.addressed | 136 |
| abstract_inverted_index.adjusting | 29 |
| abstract_inverted_index.algorithm | 38 |
| abstract_inverted_index.considers | 20 |
| abstract_inverted_index.decreased | 90 |
| abstract_inverted_index.departure | 52 |
| abstract_inverted_index.developed | 40 |
| abstract_inverted_index.evolution | 46 |
| abstract_inverted_index.headway), | 170 |
| abstract_inverted_index.numerical | 63 |
| abstract_inverted_index.objective | 84 |
| abstract_inverted_index.operators | 47 |
| abstract_inverted_index.retiming, | 26 |
| abstract_inverted_index.stations. | 60 |
| abstract_inverted_index.strategy, | 100, 103 |
| abstract_inverted_index.timetable | 12, 21 |
| abstract_inverted_index.(scheduled | 164 |
| abstract_inverted_index.acceptable | 138 |
| abstract_inverted_index.algorithm. | 78 |
| abstract_inverted_index.experiment | 64 |
| abstract_inverted_index.high-speed | 67 |
| abstract_inverted_index.strategies | 23 |
| abstract_inverted_index.correlation | 151 |
| abstract_inverted_index.implemented | 71 |
| abstract_inverted_index.programming | 6 |
| abstract_inverted_index.propagation | 154 |
| abstract_inverted_index.reordering, | 27 |
| abstract_inverted_index.high-density | 162 |
| abstract_inverted_index.optimization | 37 |
| abstract_inverted_index.propagation. | 177 |
| abstract_inverted_index.rescheduling | 13, 22 |
| abstract_inverted_index.optimization, | 108 |
| abstract_inverted_index.reconstructed | 49 |
| abstract_inverted_index.respectively. | 109 |
| abstract_inverted_index.algorithm-based | 34 |
| abstract_inverted_index.Beijing-Shanghai | 66 |
| abstract_inverted_index.first-come-first-service | 99 |
| abstract_inverted_index.first-schedule-first-service | 102 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5088716214, https://openalex.org/A5013397647 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I21193070 |
| citation_normalized_percentile.value | 0.94533985 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |