Genetic Algorithms for Optimising Context-based Neural Networks for Image Segmentation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/ssci51031.2022.10022103
Image segmentation is one of the major challenges in real-world computer vision applications. Context-embedded network models proposed for image segmentation have outperformed context-free models. However, optimized values of many parameters need to consider for such a complex network. The manual parameter selection process is ineffective and produces suboptimal performance for such a model. Therefore, we propose a context-based genetically optimized network model for image segmentation in this paper. Genetic algorithms enhance the performance of the deep network model by determining the best parameter values. The proposed three-level deep network is adaptable to image context by extracting visual and context-rich features and optimally integrating them to obtain final pixel labels for scene images. The genetic algorithm ensures optimal parameter values in all three levels to obtain a globally optimized network model to achieve the best segmentation results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ssci51031.2022.10022103
- OA Status
- green
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318606405
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318606405Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ssci51031.2022.10022103Digital Object Identifier
- Title
-
Genetic Algorithms for Optimising Context-based Neural Networks for Image SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-04Full publication date if available
- Authors
-
Ranju Mandal, Basim Azam, Brijesh Verma, Jun ZhangList of authors in order
- Landing page
-
https://doi.org/10.1109/ssci51031.2022.10022103Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10072/422709Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Artificial intelligence, Image segmentation, Genetic algorithm, Segmentation, Artificial neural network, Image (mathematics), Context model, Process (computing), Segmentation-based object categorization, Pixel, Pattern recognition (psychology), Scale-space segmentation, Selection (genetic algorithm), Machine learning, Computer vision, Biology, Object (grammar), Paleontology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318606405 |
|---|---|
| doi | https://doi.org/10.1109/ssci51031.2022.10022103 |
| ids.doi | https://doi.org/10.1109/ssci51031.2022.10022103 |
| ids.openalex | https://openalex.org/W4318606405 |
| fwci | 0.0 |
| type | article |
| title | Genetic Algorithms for Optimising Context-based Neural Networks for Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 648 |
| biblio.first_page | 642 |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11605 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Visual Attention and Saliency Detection |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9995999932289124 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7768568992614746 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.725825309753418 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.713829755783081 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C124504099 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6876494288444519 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[3].display_name | Image segmentation |
| concepts[4].id | https://openalex.org/C8880873 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6835938096046448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[4].display_name | Genetic algorithm |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6759503483772278 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5978468060493469 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48701173067092896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C183322885 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4854326844215393 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17007702 |
| concepts[8].display_name | Context model |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4797824025154114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C25694479 |
| concepts[10].level | 5 |
| concepts[10].score | 0.47800007462501526 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7446278 |
| concepts[10].display_name | Segmentation-based object categorization |
| concepts[11].id | https://openalex.org/C160633673 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4660675823688507 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[11].display_name | Pixel |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4479927718639374 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C65885262 |
| concepts[13].level | 4 |
| concepts[13].score | 0.4242507815361023 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[13].display_name | Scale-space segmentation |
| concepts[14].id | https://openalex.org/C81917197 |
| concepts[14].level | 2 |
| concepts[14].score | 0.413596510887146 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[14].display_name | Selection (genetic algorithm) |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.4087274968624115 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3722827434539795 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C2781238097 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[18].display_name | Object (grammar) |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7768568992614746 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.725825309753418 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.713829755783081 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/image-segmentation |
| keywords[3].score | 0.6876494288444519 |
| keywords[3].display_name | Image segmentation |
| keywords[4].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[4].score | 0.6835938096046448 |
| keywords[4].display_name | Genetic algorithm |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.6759503483772278 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5978468060493469 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.48701173067092896 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/context-model |
| keywords[8].score | 0.4854326844215393 |
| keywords[8].display_name | Context model |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.4797824025154114 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/segmentation-based-object-categorization |
| keywords[10].score | 0.47800007462501526 |
| keywords[10].display_name | Segmentation-based object categorization |
| keywords[11].id | https://openalex.org/keywords/pixel |
| keywords[11].score | 0.4660675823688507 |
| keywords[11].display_name | Pixel |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4479927718639374 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[13].score | 0.4242507815361023 |
| keywords[13].display_name | Scale-space segmentation |
| keywords[14].id | https://openalex.org/keywords/selection |
| keywords[14].score | 0.413596510887146 |
| keywords[14].display_name | Selection (genetic algorithm) |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.4087274968624115 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/computer-vision |
| keywords[16].score | 0.3722827434539795 |
| keywords[16].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1109/ssci51031.2022.10022103 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363605327 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) |
| locations[0].landing_page_url | https://doi.org/10.1109/ssci51031.2022.10022103 |
| locations[1].id | pmh:oai:research-repository.griffith.edu.au:10072/422709 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402548 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[1].source.host_organization | https://openalex.org/I11701301 |
| locations[1].source.host_organization_name | Griffith University |
| locations[1].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference output |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10072/422709 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061144388 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3669-2446 |
| authorships[0].author.display_name | Ranju Mandal |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I74899385 |
| authorships[0].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Central Queensland University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ranju Mandal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[1].author.id | https://openalex.org/A5002895693 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3367-6467 |
| authorships[1].author.display_name | Basim Azam |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I74899385 |
| authorships[1].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Central Queensland University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Basim Azam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[2].author.id | https://openalex.org/A5026528338 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4618-0479 |
| authorships[2].author.display_name | Brijesh Verma |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I74899385 |
| authorships[2].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Central Queensland University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brijesh Verma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Engineering and Technology Central Queensland University, Brisbane, Australia |
| authorships[3].author.id | https://openalex.org/A5100400217 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7835-9871 |
| authorships[3].author.display_name | Jun Zhang |
| authorships[3].countries | NZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I41156924 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Engineering and Computer Science Victoria University of Wellington, Wellington, New Zealand |
| authorships[3].institutions[0].id | https://openalex.org/I41156924 |
| authorships[3].institutions[0].ror | https://ror.org/0040r6f76 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I41156924 |
| authorships[3].institutions[0].country_code | NZ |
| authorships[3].institutions[0].display_name | Victoria University of Wellington |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mengjie Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Engineering and Computer Science Victoria University of Wellington, Wellington, New Zealand |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10072/422709 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Genetic Algorithms for Optimising Context-based Neural Networks for Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W1631910785, https://openalex.org/W1669643531, https://openalex.org/W1507266234, https://openalex.org/W1967061043, https://openalex.org/W2069711651, https://openalex.org/W2558375057, https://openalex.org/W2154333700, https://openalex.org/W3197341992, https://openalex.org/W2117933325, https://openalex.org/W2739874619 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/422709 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference output |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10072/422709 |
| primary_location.id | doi:10.1109/ssci51031.2022.10022103 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363605327 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) |
| primary_location.landing_page_url | https://doi.org/10.1109/ssci51031.2022.10022103 |
| publication_date | 2022-12-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2799213142, https://openalex.org/W2171943915, https://openalex.org/W2395611524, https://openalex.org/W3014195143, https://openalex.org/W2944270177, https://openalex.org/W2907052985, https://openalex.org/W2022508996, https://openalex.org/W2560023338, https://openalex.org/W2785540072, https://openalex.org/W6696085341, https://openalex.org/W2963946985, https://openalex.org/W2887063112, https://openalex.org/W2964016673, https://openalex.org/W2947137917, https://openalex.org/W2067878879, https://openalex.org/W2124290836, https://openalex.org/W139960808, https://openalex.org/W2111935653, https://openalex.org/W3034958977, https://openalex.org/W1915480574, https://openalex.org/W3006485445, https://openalex.org/W2963881378, https://openalex.org/W6675415620, https://openalex.org/W2963727650, https://openalex.org/W6638480814, https://openalex.org/W3012528238, https://openalex.org/W2910281775, https://openalex.org/W2895917037, https://openalex.org/W2886934227, https://openalex.org/W2799217622, https://openalex.org/W2412782625, https://openalex.org/W6729856380, https://openalex.org/W2901249224, https://openalex.org/W2884490794, https://openalex.org/W2536208356, https://openalex.org/W2028277005, https://openalex.org/W6682137105, https://openalex.org/W2963176324, https://openalex.org/W3108812043, https://openalex.org/W2785942759, https://openalex.org/W2554423077, https://openalex.org/W2150609397, https://openalex.org/W4300126339, https://openalex.org/W2963840672, https://openalex.org/W1817277359 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 35, 51, 56, 125 |
| abstract_inverted_index.by | 78, 94 |
| abstract_inverted_index.in | 8, 65, 119 |
| abstract_inverted_index.is | 2, 43, 89 |
| abstract_inverted_index.of | 4, 27, 73 |
| abstract_inverted_index.to | 31, 91, 104, 123, 130 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.The | 38, 84, 112 |
| abstract_inverted_index.all | 120 |
| abstract_inverted_index.and | 45, 97, 100 |
| abstract_inverted_index.for | 17, 33, 49, 62, 109 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 71, 74, 80, 132 |
| abstract_inverted_index.best | 81, 133 |
| abstract_inverted_index.deep | 75, 87 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.many | 28 |
| abstract_inverted_index.need | 30 |
| abstract_inverted_index.such | 34, 50 |
| abstract_inverted_index.them | 103 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.Image | 0 |
| abstract_inverted_index.final | 106 |
| abstract_inverted_index.image | 18, 63, 92 |
| abstract_inverted_index.major | 6 |
| abstract_inverted_index.model | 61, 77, 129 |
| abstract_inverted_index.pixel | 107 |
| abstract_inverted_index.scene | 110 |
| abstract_inverted_index.three | 121 |
| abstract_inverted_index.labels | 108 |
| abstract_inverted_index.levels | 122 |
| abstract_inverted_index.manual | 39 |
| abstract_inverted_index.model. | 52 |
| abstract_inverted_index.models | 15 |
| abstract_inverted_index.obtain | 105, 124 |
| abstract_inverted_index.paper. | 67 |
| abstract_inverted_index.values | 26, 118 |
| abstract_inverted_index.vision | 11 |
| abstract_inverted_index.visual | 96 |
| abstract_inverted_index.Genetic | 68 |
| abstract_inverted_index.achieve | 131 |
| abstract_inverted_index.complex | 36 |
| abstract_inverted_index.context | 93 |
| abstract_inverted_index.enhance | 70 |
| abstract_inverted_index.ensures | 115 |
| abstract_inverted_index.genetic | 113 |
| abstract_inverted_index.images. | 111 |
| abstract_inverted_index.models. | 23 |
| abstract_inverted_index.network | 14, 60, 76, 88, 128 |
| abstract_inverted_index.optimal | 116 |
| abstract_inverted_index.process | 42 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.values. | 83 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.computer | 10 |
| abstract_inverted_index.consider | 32 |
| abstract_inverted_index.features | 99 |
| abstract_inverted_index.globally | 126 |
| abstract_inverted_index.network. | 37 |
| abstract_inverted_index.produces | 46 |
| abstract_inverted_index.proposed | 16, 85 |
| abstract_inverted_index.results. | 135 |
| abstract_inverted_index.adaptable | 90 |
| abstract_inverted_index.algorithm | 114 |
| abstract_inverted_index.optimally | 101 |
| abstract_inverted_index.optimized | 25, 59, 127 |
| abstract_inverted_index.parameter | 40, 82, 117 |
| abstract_inverted_index.selection | 41 |
| abstract_inverted_index.Therefore, | 53 |
| abstract_inverted_index.algorithms | 69 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.extracting | 95 |
| abstract_inverted_index.parameters | 29 |
| abstract_inverted_index.real-world | 9 |
| abstract_inverted_index.suboptimal | 47 |
| abstract_inverted_index.determining | 79 |
| abstract_inverted_index.genetically | 58 |
| abstract_inverted_index.ineffective | 44 |
| abstract_inverted_index.integrating | 102 |
| abstract_inverted_index.performance | 48, 72 |
| abstract_inverted_index.three-level | 86 |
| abstract_inverted_index.context-free | 22 |
| abstract_inverted_index.context-rich | 98 |
| abstract_inverted_index.outperformed | 21 |
| abstract_inverted_index.segmentation | 1, 19, 64, 134 |
| abstract_inverted_index.applications. | 12 |
| abstract_inverted_index.context-based | 57 |
| abstract_inverted_index.Context-embedded | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.20081382 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |